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Abstract 

Road traffic is the major source of pollution and contributes remarkably to air pollution 

despite improvements in pollution control engines and technologies. Human effects and 

environment impacts associated with nanoparticles generated from road traffic have recently 

induced significant intensive research activities. To measure and assess knowledge of particle 

pollutants from road traffic, several methods are available, with their advantages and 

limitations. Such as the example of real-world measurements that make the evaluation of 

vehicle emissions (exhaust and non-exhaust emissions) according to real driver behavior and 

traffic conditions is a good reproducibility of test conditions. However, this approach remains 

insufficient and limited, particularly in the distinction between the sources of non-exhaust 

emissions.  To solve the requirements on air pollution quality and sustainable mobility and 

morbidity, pronounced focus should be granted on nanoparticles produced from road traffic. 

In the first time, this dissertation starts to classify and analyze the existing knowledge of 

nanoparticles inroad traffic atmosphere, highlights recent progress and emphasizes research 

emerging and priorities aspects of this problem. It analyzes the actual state of research related 

to nanoparticles and highlights where future research activities on this topic should be 

addressed. In the second time, it measures the PNCs within the  5.6  and 560 𝑛𝑚 rangeusing a 

Fast Mobility Particle Sizer 
TM

 (𝐹𝑀𝑃𝑆 TM
) Spectrometer (𝑀𝑜𝑑𝑒𝑙 3091). It investigates the 

effect of traffic volume, wind speed and direction, height above the road surface and distance 

from the source on both particle number concentration (𝑃𝑁𝐶) and particle number 

distribution (𝑃𝑁𝐷). In addition, it estimates continuous real-world measurements of exhaust 

and non-exhaust particle emissions within the 0.35 −  22.5 𝜇𝑚 diameter size range over 

different road traffic areas, using the GRIMM series 1.108 Aerosol Spectrometer. Finally, this 

thesis predicts vehicle exhaust and non-exhaust particle number concentration using 𝐴𝑁𝑁 

models and multiple linear regressions, based on real-world measurements over urban road 

traffic. Equally, it compares the predicted with the measured 𝑃𝑁𝐶𝑠 using the GRIMM. 

 

Keywords: Exhaust particle; non-exhaust particle, brake wear, tire wear, road surface wear, 

resuspension, ANN, prediction, real-world measurements, unregulated pollutants.  

 



Résumé 

Le trafic routier est la source majeure de pollution malgré l'évolution technologique de 

motorisations et de contrôle de la pollution. Les effets sur l'homme et l'environnement des 

nanoparticules générées par le trafic routier ont récemment donné lieu à des activités de 

recherche intenses. Pour mesurer et évaluer les connaissances sur les polluants particulaires 

issus du trafic routier, plusieurs méthodes sont disponibles dans la littérature. Des mesures en 

conditions réelles ont été effectuées afin d‘évaluer les émissions des véhicules (émissions à 

l'échappement et hors échappement), en tenant compte du comportement des conducteurs et 

des conditions de circulation réelles, est une approche efficiente. Cependant, elle reste 

insuffisante et limitée, notamment dans la distinction entre les différentes sources des 

émissions hors-échappement. Cette thèse commence par classer et analyser les connaissances 

existantes sur les nanoparticules engendrées par le trafic routier, met en évidence les progrès 

récents et souligne les aspects émergents et prioritaires de la recherche sur ce problème. Elle 

analyse l'état actuel de la recherche sur les nanoparticules et met en évidence les points sur 

lesquels devraient être menées les futures activités de recherche sur ce sujet. Ensuite, elle 

mesure la concentration en nombre des particules (𝑃𝑁𝐶) avec une taille allant de 5,6 

jusqu‘à 560 𝑛𝑚. Elle étudie l'effet du volume du trafic, de la vitesse et de la direction du vent, 

de la hauteur au-dessus de la surface de la route et de la distance sur la 𝑃𝑁𝐶 et la distribution 

en nombre de particules (𝑃𝑁𝐷). Elle estime avec des mesures continues et en temps réel les 

émissions de particules d'échappement et hors échappement avec des diamètres allant de 0,35  

jusqu'à 22,5 𝑚 sur différentes zones du trafic routier. Elle évalue l‘effet des vitesses et les 

manœuvres d‘accélération et de décélération sur la concentration des particules en nombre et 

en masse.  Finalement, elle prédit la concentration en nombre des particules (𝑃𝑁𝐶) à 

l‘'échappement et hors échappement des véhicules à l'aide des modèles de réseaux de neurone 

et de régressions linéaires multiples, sur la base de mesures réelles dans une route urbaine. De 

même, elle compare les 𝑃𝑁𝐶 prédits avec les 𝑃𝑁𝐶 mesurés en temps réel.  

Mots clés : Mesures en temps réels ; polluants non-réglementés ; usure des freins, usure des 

pneus, usure de la surface de la route, remise en suspension de la poussière ; ANN 
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Introduction 

Particle exhaust and non-exhaust emissions are two essential aspects to be considered for 

mitigating the ambient air pollution and ensure a sustainable mobility and environment. The 

four non-exhaust emissions sources are; resuspension, tire, road surface and brake wear. 

These particles have negative impacts not only on human health but also on visibility, air 

quality, the environment and both direct and indirect climate forcing. Measurements and 

modeling of particle number concentrations for both exhaust and non-exhaust emissions are 

the focus of this research.   

Air pollution has become a critical issue (Silva et al., 2020a) worldwide. Road traffic has 

pronounced negative impacts on air quality (Silva et al., 2020b).The participation of road 

traffic can reach up to 90 % of total particle number concentrations PNCs in polluted urban 

areas(Kumar et al., 2014). Traffic particle emissions were the major contributor for air quality 

deterioration for many years. Atmospheric Particulate Matter PM has been recognized as 

causing around 430,000 premature deaths per year in Europe (European Environment 

Agency, 2015). Kheirbek et al., 2016 outlined that buses and trucks within New York City 

participated by about 53% of the 𝑃𝑀2.5 attributable deaths and presented for the largest 

share of on-road mobile attributable ambient 𝑃𝑀2.5. Harrison et al., 2012a conducted 

sampling measurements near a major road in London and demonstrated that 𝑃𝑀10 non-

exhaust emissions (brake wear) participated by up to 55%in wt.  

 

Available studies indicating that PNCs are critical metric to define (Ibald-Mulli et al., 2002) 

and toxicological (Murr and Garza, 2009), the other studies relate exposure to ultrafine 

particles with adverse toxic effects.  

 

Problem statement  

Nanoparticle emissions from road traffic take place at the regions that are typically occupied 

by people. Diesel-powered vehicles constitute the major source of road vehicle pollution in 

the European Union (EU). Urban areas generate considerable human activity and a large 

proportion of pollution that induces significant adverse environmental impacts, not to mention 

health effects by virtue of penetrating into the deep lung (Stone et al., 2017).  
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In Europe, the contribution of road transport varied by around 32 % of the total nanoparticles 

in Greece to about 97% in Luxemburg. For the other European countries (Spain, France, 

Germany, UK, Italy, Poland) are the most 𝑃𝑀 emitters, where the road traffic contributes by 

about 72 % of the total traffic-engendered 𝑃𝑀 emissions in EU(Kumar et al., 2014).In 

addition, a wide PM concentration mass reaching up to 78 and 113 𝜇𝑔 . 𝑚−3of 𝑃𝑀2.5 and 

𝑃𝑀10 respectively during a Brazilian city (Pereira et al., 2017). Suddenly increase of 𝑃𝑀2.5 

air mass concentration was observed during Beijing by Zhang et al. (2017), reaching up 150 

to 250 µ𝑔 𝑚–3. 

 

Road traffic PM ( 𝑃𝑀1, 𝑃𝑀2.5, 𝑃𝑀10) emissions include both exhaust and non-exhaust 

particulate emissions. The exhaust PM particle emission is produced from tailpipe as a 

consequence of incomplete combustion of carburant inside the engine chamber; (2) primary 

and secondary particles produced from tire, brake and road wear; (3) primary particles 

engendered from resuspension due to vehicle-wheel turbulence (Schauer et al., 2006; Thorpe 

and Harrison, 2008; Mehel and Murzyn, 2015; Trejos et al., 2021). 𝑃𝑀 adversely affects 

human health in two ways, namely a diminished capacity of the respiratory tract to remove 

such deposits and a 𝑃𝑀 deposition mechanism acting in therespiratory tract, both of which are 

highly correlated with 𝑃𝑀 size (Mainka and Zajusz-Zubek, 2019). Smaller particles(< 1𝑚) 

exerts a larger negative effect on human health, targeting asthma and the respiratory system 

(Mei et al., 2018). Despite these negative externalities, until now 𝑃𝑀1 has not been 

frequently quantified since it lies outside the focus of air quality standards.In addition, 

environmental impacts have emerged from the ambient road traffic particles. In fact, visibility 

impairment is caused by build-up of the atmospheric particles that scatter or absorb light from 

the sun (Horvath, 2008). It decreases with wind speed and temperature and increases with 

atmospheric pressure and relative humidity (𝑅𝐻) (Tsai, 2005). 

Resuspension and wear part can be considered as non-exhaust emissions (i. e. road dust, brake 

wear, tire wear and road surface)are shown to strongly influence urban air quality (Silva et al., 

2020c; Trejos et al., 2021; Beji et al., (2020,2021)). 

 

Research objectives 

The main objective of this dissertation is to measure particle number concentration PNC 

under real traffic conditions in different road segment areas. It starts to measure the ambient 

air nanoparticles (exhaust and non-exhaust PNCs) in urban road with different traffic 
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conditions using the Fast Mobility Particle Sizer
TM

 (FMPS
TM

) Spectrometer (Model 3091). 

These measurements were taken at two different heights, as well as at different distances 

between source and sampling sites, ranging from 6.60 m to 330 m. Second, continuous real-

world measurements of particle exhaust emissions were recorded over four road segment 

types (urban, rural, motorway and national (ring) road RN6 )in the city of Bron, Lyon 

France). Third, continuous real-world measurements of particle non-exhaust emissions were 

recorded over four road segment types (urban, rural and motorway areas). In addition, it tends 

to assess the effect of vehicle speed and acceleration/deceleration maneuvers on vehicle 

exhaust particle emissions. The final objective is to predict both exhaust and non-exhaust 

PNCs based on the real PNCs measured by the GRIMM analyzer, series 1.108 Portable 

Aerosol Spectrometer, using the artificial neural networks models. These measurements were 

taken in order to ensure a sustainable environment and mobility.  

Research contribution 

This dissertation develops continuous measurements of PNCs taking into account real road 

traffic conditions. In fact, it contributes to the air quality in Lyon (France) by means of 

roadside monitoring of PNCs and PNDs. The effect of several parameters, like the distance 

from traffic, height above ground, traffic volume, wind speed and wind direction, was also 

taken into account during measurement campaigns. In addition, it tends to assess the effect of 

vehicle speed and vehicle acceleration/deceleration maneuvers on non-exhaust particle (NEP).  

Dissertation Layout 

The dissertation documents classified as follows: 

- Chapter 1classifies and analyzes the existing knowledge of nanoparticles emissions from 

road traffic, highlights recent progress and emphasizes research emerging and priorities 

aspects of this environmental and health problem. This chapter describes of the main reasons 

behind the actual and progressive interest of the ongoing research in this field. This is 

followed by a brief discussion of the atmosphere nanoparticles major sources. The subsequent 

section focuses on the nanoparticles influencing parameters including climate conditions, 

height above the road surface and distance between source (road traffic) and sampling site. 

The next section provides a comprehensive summary on sampling measurement 

methodologies and instrumental techniques. Further section reviews health and environment 

implications associated with particle exposure. Finally, this chapter analyzes the actual state 
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of research related to nanoparticles and highlights where future research activities on this 

topic should be addressed. 

Chapter 2 describes the methodology for measuring continuous ambient air nanoparticles in 

urban road traffic. The method allows to measure PNCs, which were resolved within the 5.6- 

and 560-nm range.  Series of variables were taken into consideration during sampling 

measurement days; distances from the source, heights from ground, traffic volumes and 

atmospheric conditions (wind speed, wind direction, humidity and temperature). In addition, 

this chapter analyzes the effect of each variable on ambient PNC and particle number distribution 

PND.  

Chapter 3 includes two sections:  

Section 1 estimates, investigates and compares real-world, micro-scale continuous exhaust 

particle mass concentrations and number by optical size, from roughly 0.35 to 22.5m, under 

actual measurement conditions for diesel light-duty vehicles in order to improve road mobility 

within the framework of environmental sustainability. Furthermore, this section specifies the 

effect of vehicle speed/acceleration on the evolution of nanoparticles in the size range of 0.35 

- 22.5 m. 

Section 2 estimates, investigates and compares real-world, micro-scale continuous non-

exhaust particle mass concentrations and number by optical size, from roughly 0.35 to 

22.5m, under actual measurement conditions for diesel light-duty vehicles. In addition, the 

current section evaluates the effect of vehicle speed and vehicle acceleration/deceleration 

maneuvers on NEP.  

Chapter 4 also includes two sections:  

Section1 predicts the exhaust PNCs under urban road traffic area based on continuous real 

PNCs measured by the GRIMM analyzer, series 1.108 Portable Aerosol Spectrometer. The 

artificial neural network ANN models (GRNN and MLP) have been chosen to predict PNCs. 

In addition, this section tends to compare the GRIMM output Vs ANNs output. Then, the test 

was ended when the error reached its minimum. 

Section 2 predicts the non-exhaust PNCs under urban road traffic area based on continuous 

real PNCs measured by the GRIMM analyzer, series 1.108 Portable Aerosol Spectrometer. 

The artificial neural network ANN model (GRNN) and MLR have been chosen to predict 
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PNCs. Furthermore, this section compares the GRIMM output Vs GRNN and MLR outputs. 

The performance of the trained networks was evaluated, using several statistical parameters 

which are; RMSE, R², and MAPE. 

 

Lastly a summary of the findings, the conclusions of the research effort and some 

recommendations for further research have been established. 
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Chapter 1.  Literature review 

1.1. Introduction 

The designation of nanoparticle (𝑁𝑃) is mentioned to consult a wide range of particles, and 

delimitations change considerably between different research studies, depending on the 

technique/protocol of measurement and the context of the research. The most specific used 

size is particles smaller than 100 𝑛𝑚, using the term 𝑃𝑀0.1 or ultrafine particles (𝑈𝐹𝑃𝑠). The 

𝑃𝑀0.1 (𝑃𝑀 is designed to the subscripts and particulate matter show cut-off sizes in µ𝑚) 

have been strictly related with adverse health effects and act by mechanisms not shared with 

larger particles (WHO, 2013). It is worthy to note that 𝑈𝐹𝑃𝑠 contribute by the major rate 

(80 %) of the total number concentration of ambient nanoparticles with negligible mass 

concentration (Kittelson, 1998). Furthermore, it is powered by the close vicinity of vehicle 

traffic emissions with residential census. More precisely, 𝑈𝐹𝑃𝑠 with a diameter smaller than 

300 𝑛𝑚 present over 99% of total particulate emissions (Kumar et al., 2009).  

 

Nanoparticle emissions from road traffic take place at regions typically occupied by people. 

The induced nanoparticles can enter and assembled in car cabins (Joodatnia et al., 2013), due 

to poor ventilation, which is a very dangerous phenomenon for human health. 

Nanoparticle emissions from road traffic can be classified into three-different classes: (1) 

primary (carbon monoxide (𝐶𝑂), nitrogen oxide (𝑁𝑂𝑥) and sulfur oxide (𝑆𝑂𝑥)) and 

secondary particles (ammonia (𝑁𝐻3), volatile organic compounds (𝑉𝑂𝐶𝑠), secondary organic 

aerosols (𝑆𝑂𝐴) and secondary inorganic aerosols (𝑆𝐼𝐴)) induced from vehicle exhaust.  

Atmospheric nanoparticles have several terminologies. Regulatory agencies often use 

terms 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1. On the other hand, toxicologists apply terms like coarse 

particles (> 1000 𝑛𝑚), fine (< 1000 𝑛𝑚) and ultrafine particles (< 100 𝑛𝑚) (Araujo et al., 

2008; Martinello et al., 2021).  

In aerosol science, particles are examined in terms of modes including nucleation, Aitken, 

accumulation and coarse. Each mode has specific size range, chemical composition, sources, 

formation mechanisms and deposition pathways (Hinds, 1999). Historically, at the beginning 

of the 1990’𝑠, the PM emissions were controlled for light duty vehicles (𝐿𝐷𝑉𝑠), by weighing 

the mass placed on filters. Since early 2000, the gravimetric analysis was not sufficient to 

accurately control the vehicle PM emissions equipped with Diesel Particulate Filter (𝐷𝑃𝐹). 

Consequently, there was a serious need to be heading towards an accurate and sensitive 
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methodology that would complement the regulated gravimetric procedure with low 

investment costs. The latter specified method was focused upon counting solid particles 

number larger than 23 𝑛𝑚 (𝑆𝑃𝑁23) (GRPE, 2003). In the other hand, vehicle with modern 

gasoline-direct-injection (𝐺𝐷𝐼) presents the highest pollution sources (Xing et al., 2020). The 

size, elemental composition and morphology of the particles and their ageing in a smog 

chamber have been analyzed by the authors using the same method adopted by Xing et al. 

(2017, 2019).The particles were assessed using Tecnai𝐺2 𝐹30 field emission high-resolution 

transmission electron microscope (𝐹𝐸 − 𝐻𝑅𝑇𝐸𝑀), which is equipped with a scanning 

transmission electron microscopy (𝑆𝑇𝐸𝑀) and an Oxford 𝐸𝐷𝑋 (Fig. 2.1) 

EU vehicle emissions legislation is the first one that regulates 𝑆𝑃𝑁23 emissions and recently 

was established China 5 and 6 limits. 𝐸𝑈 emission standards applied the first regulation of 

solid particle number (𝑆𝑃𝑁) limit targeting the light vehicle diesel engines in 2011 (𝐸𝑢𝑟𝑜 5𝑏) 

with 6.0 × 1011(#/𝑘𝑚).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 1: TEM images of the individual primary particles emitted from the GDI-engine 



8 

 

 

Vehicle and the secondary organic particle in the chamber after exposure to ambient sunlight 

for 3.5 h. (a) Soot particle. (b) Ca-rich particle. (c) S-rich particles. (d) Metal-rich particles 

(Fe). (e) Metal-rich particles (Ti). (f) Bright-field-TEM and dark-field-TEM image of organic 

particles, and others are the mapping of the 𝐶, 𝑂, 𝑃, 𝐶𝑎, 𝑆, 𝑎𝑛𝑑 𝑍𝑛 in the organic particle. (g) 

Secondary organic particle in the chamber (Xing et al., 2020).  

For light vehicle gasoil engines, the first 𝑆𝑃𝑁 23 limit appeared in 2014 (𝐸𝑢𝑟𝑜 6). Table 1.1 

summarizes the European and Chinese regulations concerning 𝑆𝑃𝑁 23 for both light-duty and 

heavy-duty vehicles. The most available studies in the open literature have only summarized 

the recent regulations of the European Union (Giechaskiel et al., 2012; Giechaskiel et al., 

2014a; Bischof, 2015; Giechaskiel et al., 2018).  

However, this current chapter has briefly updated the recent limitations of the European and 

Chinese standards, since the improvement of the vehicles𝑆𝑃𝑁23 in one country of the world 

will result in a general improvement of the quality of air on our planet. As far as the authors 

knowledge is of concern, there are no regulations for solid particles smaller than 23𝑛𝑚 (sub-

23 𝑛𝑚), that we find a critical size to be assessed. Solid particles sub-23 𝑛𝑚 should be 

assessed for human health prevention reasons. In fact, they have different and complicated 

chemical composition (i.e. significant rate of metal oxides) and have considerable deposition 

efficiency in human respiratory system (Mayer et al., 2012; Giechaskiel et al., 2014b). 

In this context, until now there are no specified information about the exact biological 

mechanisms involved about epidemiological health effects. Except, available studies 

indicating that PNCs are critical metric to define (Ibald-Mulli et al., 2002) and toxicological 

(Murr and Garza, 2009), the other studies relate exposure to ultrafine particles with adverse 

toxic effects. 

As a matter of fact, ultrafine particles have (1) larger deposition in cardiovascular or 

respiratory systems and larger likelihood of penetration (Donaldson et al., 2005; Jonathan et 

al., 2012), (2) longer residence time and higher level of suspension in the atmosphere, (3) 

higher surface area per unit volume than particles with large size increasing the aptitude to 

absorb carcinogenic organic compounds and have largest potentially to penetrate the cell 

membrane (US Environmental Protection Agency, 2002; Donaldson et al., 2005). 
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Table 1. 1: European and Chinese regulations of SPN 23 for both light duty and heavy-duty 

 

 

 

                                                 
1
 RDE= real driving emissions 

2
 CF=Correction factor,  

3
WHTC=World Harmonized Transient Cycle 

4
 WHSC=World Harmonized Stationary Cycle 

5
 WLTP= World Harmonized Light-Duty Vehicles Test Procedure 

6
 World-harmonized Not-to-Exceed 

 Regulation Cycle SPN23[P/km or P/Kwh] 

EU- For light duty vehicle (Euro 6) 

 

Type approval 2017/1151 

2017/1154 

WLTC 

On road (RDE
1
) 

6×10
11 

 P/km
 

CF
2
=1.5 

In-Service 

Conformity(ISC) 

2018/1832 WLTC 

On road (RDE) 

6×10
11 

 P/km 

CF=1.5 

 

For heavy duty vehicle (Euro 6) 

 

Type approval 582/2011 WHTC
3
 

WHSC
4
 

6×10
11 

 P/km
 

8×10
11 

 P/km
 

 

ISC - On road (RDE) CF= 1.63 

 

China                                    For light duty vehicle (Euro 6): 

Vehicle with Spark Ignition (Gasoline) 

 

 

PI: positive ignition, 

(gasoline and natural 

gas) 

 

 

2016/18352.6 

 

 

WLTP
5
 

 

6×10
11

 P/km 

 

 

Vehicle with Compression Ignition (Diesel) 

 

CI: compression ignition 

(Diesel) 

 

2016/18352.6 

 

 

WLTP 

 

6×10
11

 P/km 

 

 

China                   For heavy duty vehicle (Euro 6): 

 

 

 

CI: compression ignition 

(Diesel) 

 

 

 

2018/ 17691 

 

WHSC 

WHTC 

 

WNTE
6
 

 

8×10
11

 kWh
-1 

6×10
11

 kWh
-1 

_ 

CF=2
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Besides human effects, PNCs have pronounced and hazardous impact on global climate 

(Strawa et al., 2010). Particulate matter with size interval [100 − 1000 𝑛𝑚] is responsible 

for the limited visibility in urban area (Kim et al., 2006; Hujia et al., 2013). Furthermore, 𝑃𝑀 

emissions vary with local ambient temperature and may be favorable to catastrophic 

phenomenon like acid rains, for example. 𝑃𝑀s may be transported through wind over a long 

distance then deposited on water or ground. Due to their dangerous implications that threaten 

the environment and the humanity, a strict control of 𝑃𝑀s is therefore necessary to put in 

place as rapid as possible.    

In order to take complete and real information about particle measurements, laboratory 

control methods become insufficient measurement tools. For this reason, laboratory 

measurements have been enhanced through on-road-real driving emissions (𝑅𝐷𝐸), using for 

example the portable emissions measurement systems (𝑃𝐸𝑀𝑆) (Giechaskiel et al., 2019a). 

Other analyzer tools like Fast Mobility Particle Sizer (𝐹𝑀𝑃𝑆), Scanning Mobility Particle 

Sizer (𝑆𝑀𝑃𝑆), Condensation Particle Counters (𝐶𝑃𝐶) and Electrical Low-Pressure Impactor 

(𝐸𝐿𝑃𝐼) have also been used (Garg et al., 2000; Simon et al., 2017; Belkacem et al., 2020; 

Béjiet al., 2020). Studies have proved that solid particles with size lower than 23 𝑛𝑚 could 

largely exceed as many as  𝑆𝑃𝑁23 for gasoline vehicles (Giechaskiel et al., 2019b). 

Detailed characterization of nanoparticles in the ambient atmosphere is essential for 

generating a regulatory framework. Several available instruments have recently appeared to 

measure particle concentrations and distribution were limited by a lack of standard protocols, 

methodologies and application guidelines. This chapter review seeks to highlight the strengths 

and weaknesses of the most important commercially particles instrumentation tools. It aims to 

delimit the different parameters that influence on nanoparticles emissions, including weather 

conditions (ambient temperature, precipitation, wind speed, and direction), distance from the 

source (traffic) and height above the ground. In addition, it tends to understand the impact of 

aerosols on climate change, environment and human health. Finally, it proposes some 

recommendations to increase sustainability in vehicular traffic by focusing on three important 

factors, namely vehicle technologies, road users and infrastructure. 

It can be concluded that ambient traffic nanoparticle concentrations and characteristics are 

complex including simultaneously the driving style effects, the vehicle technologies (brake 

system, aspiration particles system, Brake Disks and Pads wear, etc.), and the meteorological 
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conditions. Furthermore, several dynamic phenomena may affect particle formation and 

nanoparticle emissions, transportation and transformation after emissions.  

1.2. Sampling measurement methodologies and instrumental 

techniques 

1.2.1. Sampling measurement methodologies 

Three different sampling measurement methodologies are available for measuring 

particle number and mass concentrations; in-situ, laboratory and real-world emissions 

measurements. Particle number concentrations are not always comparable due to dissimilarity 

in instruments, sampling and traffic conditions. This present chapter presents the difference, 

weaknesses and strength of each methodology. Therefore, the objective of this paragraph is to 

help researchers choosing the most appropriate equipment to estimate particles.  

Environmental road traffic particles are divided into exhaust emissions and non-exhaust 

emissions. Particle exhaust emissions extending much with size diameter less than 23 𝑛𝑚 

(Kittelson, 1998). In real-time emissions, the mobile source is followed by a mobile 

laboratory either related by a trailer or placed inside the vehicle (Vogt et al., 2003; Jezek et 

al., 2015) to measure the exhaust plume of the vehicle providing a large range of operating 

conditions. Real-world measurements make it possible to examine a typical sample of 

vehicles for fleet characterization. The obtained results indicated qualitative good accordance 

for particles in the nucleation mode (< 30 𝑛𝑚) (Rönkkö et al., 2006; Casati et al., 2007) and a 

good accordance for particles in the soot mode or accumulation mode (100 − 300 𝑛𝑚) 

(Casati et al., 2007). However, the diluted vehicle exhaust of low emitting vehicles (i.e.diesel 

particulate filter (𝐷𝑃𝐹)) will be close to the level of ambient particle background (Bergmann 

et al., 2009). Therefore, the obtained results will have a high level of variability and 

uncertainty. In-situ measurements allow us to determine a variety of variables under a wide 

range of conditions. They provide continuous time-series data at the unit time scale for some 

devices (i.e. The Fast Mobility Particle Sizer (𝐹𝑀𝑃𝑆)).  Particulates are not measured on a 

sampling filter and analyzed after collection. This makes it very appropriate for the 

measurement of particle properties like sizes, number concentrations and size distributions. 

Some in-situ instruments are efficient to measure hot exhaust and undiluted at the tailpipe. 

However, some distinct disadvantages must be revealed when compared to real-time 

measurements. The source of particle concentrations measured in-situ (i. e. in the vicinity of 
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the road traffic) cannot be exactly specified (i. e. exhaust, tire wear, tire road wear (𝑇𝑅𝑊), 

brake wear, road wear and resuspension). In addition, some important kinds of measurements 

are inadequate to be elaborate in the field. Table 1.2 (Annex 1) illustrates the most important 

studies available in literature that are divided into laboratory, in-situ and real-world 

measurements. It this table, we provide also the used particles instruments, size range, 

advantages and disadvantages that will be described in details in the next section. 

1.2.2.  Instrumental techniques 

Ambient nanoparticles present a variety of shapes (irregular, tabular, aggregated) that 

are not perfectly spherical. This causes serious difficulty in their measurements. Electrical 

mobility equivalent (𝐷𝑝 ) diameters, Stocks (𝐷𝑠) and Aerodynamic equivalent (𝐷𝑎 ) are used to 

categorize particles when the center of attention is on the behavior of particles in moving air. 

Different particulate instruments have been elaborated for PM measurements and particles 

number concentrations over the past decades. Some of them focused on surface area, particle 

number or chemical compositions. These instruments include a variety of condensation 

particle counter battery. The particle size magnifier and electrical mobility spectrometers have 

been characterized in laboratory experiments applying carefully designed calibration aerosols. 

They are generally executed in combination or alone, to investigate the gas-to-particle 

transition in experiments inducing particles with a wide range of composition (Kangasluoma 

et al., 2020). An overview of weakness and strength of the most advanced commercially 

instruments that are currently used for nanoparticles monitoring are provided below.  The 

PMs concentration can be in number (𝑁), mass (𝑚) and surface area (𝑆). These previous 

mentioned instruments can be divided into four measuring principles including optical, 

gravimetric, electrical and microbalance charge. 

1.2.2.1. Concentration measurement methods 

1.2.2.1.1. Optical Methods 

According to Giechaskiel et al. (2014c), the optical detection methods, aerosol particles are lit 

by a light beam and distribute this light in all directions by means of scattering process.  

Fraction of this light is synchronously transformed into other energy forms by absorption. 

Moreover, the authors revealed that the extinction of light can be estimated by the addition of 

absorption and scattering. 
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Optical instruments used for measuring particle concentration, in real-time, are based on 

scattering and light extinction modes. This review starts by instruments based on light 

scattering including Respirable Aerosol Monitor (𝑅𝐴𝑀), University of California Berkeley-

Particle and Temperature Sensors (𝑈𝐶𝐵 − 𝑃𝐴𝑇𝑆), Optical Particle Counter (𝑂𝑃𝐶) and 

Condensation Particle Counters (CPCs). Instruments based on absorption include 

Spotmeters/reflectometers and Photoacoustic Soot Sensor (𝑃𝐴𝑆𝑆). 

 

- Respirable Aerosol Monitor (RAM) 

The RAM is the most commercial light scattering photometers instrument. It allows 

measuring angles of  90°, 45° and < 30° and visible light ( 600 𝑛𝑚) (Vincent, 2007).  

The aerosol was aspirated through a pump, and then progressed by a cyclone that separated 

the respirable aerosol fraction. The aerosol passes into the optical sensor zone, by scattering 

the infrared light in an angle of 45° to 90°, and then the aerosol was observed by a photodiode 

(Amaral et al., 2015).  The recent digital version is DataRam4, having the potential to 

measure continuously real-world median particle size and concentration of airborne dust, 

mist, fumes and smoke. Furthermore, relative humidity and temperature are displayed in the 

screen. The measure of maximum response of particle size (i. e. concentration measurements) 

ranges between 0.08 to 10 µ𝑚. In addition, the DataRam4 monitors mass concentrations of 

fine and coarse particulate (𝑃𝑀1, 𝑃𝑀2.5 and  𝑃𝑀10). In this context, Costa et al. (2012) used 

the DataRam4 in both field experiments and laboratory to sample 𝑃𝑀2.5.  A satisfactory 

correlation was demonstrated using DataRam4 with other instruments to measure particle and 

size concentration (Amaral et al., 2015).  

- University of California Berkeley-Particle and Temperature Sensors (UCB-PATS) 

The UCB-PATS operates the sensing chamber from a commercial home smoke detector 

influenced by natural airflow and diffusion to transfer particles into its sensing chamber. An 

infrared LED shines every 2 seconds; a photodiode receives the response at 30° forward 

scattering. The user-set interval in minutes was averaged the resulting amplitudes (Pillarisetti 

et al., 2017). The signal-to-noise report for particles range 150 − 500  𝑛𝑚 in volume mean 

diameter was ranging from 25 − 500  𝑛𝑚 and for mass concentrations between 0.50 −

16 𝑚𝑔/𝑚3(Edwards et al., 2006).  

-  Optical Particle Counter (OPC) 
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The OPC is among the most used instrument, which implements a light source, commonly a 

diode laser, to light a sample of particles in a designed angle. A photodetector estimates the 

light that scattered from the particles. Based on the intensity of the flash, particles can be 

measured and counted simultaneously. The scattered light is identified by a photodetector as 

an electric pulse. The particle size is defined from the height of the electric pulse, applying a 

calibration curve (Amaral et al., 2015). It makes sense to count and size particles within the 

50 − 800 𝑛𝑚 diameter size range, and make a very high-resolution size distribution stretch 

up to 100 size bins. It is also able to operate at 10 applied the   𝐻𝑧, so it is efficient for 

measuring particle flux. In this context, Jiang and Bell (2008) applied a model of the OPC, 

known as Side Park Personal Aerosol Monitor model 𝐴𝑀510 (TSI, Shoreview, MN, USA) to 

estimate 𝑃𝑀2.5 concentration. They demonstrated that the aerosol sample is continuously 

penetrated inside the collection chamber. 

- Condensation Particle Counters (CPCs) 

The CPCs belong to the family of light scattering counters, which are used to measure the 

concentration with small-sized particles. In addition, it is able to detect airborne particles with 

size diameter less than 10 𝑛𝑚, over a concentration range between 0 to 1 × 104#/𝑐𝑐, and at 

an aerosol flow rate of 1.0 𝑙/𝑚𝑖𝑛, depending on the applied model. This instrument is 

perfectly appropriated for applications without high-concentration measurements, like filter, 

air cleaner testing, environmental monitoring, particle counter calibration and climate and 

atmospheric studies (www.arm.gov). When the particles are increased in size diameter by 

condensation, the CPC acts similarly like optical particle counters. 

-  Spotmeters 

These instruments are also known as smoke filter meters or reflectometers owing to the light 

absorption estimating principal based on light reflection over filter. 

Particle concentrations are measured by filtering the exhaust gas in a filter paper, and saving 

of the ratio between the light reflected by this unexposed spot and exposed spot (Giechaskiel 

et al., 2014c).  

- Photoacoustic Soot Sensor (PASS) 

Light absorbing particles comprised in the aerosol samples are frequently heated by 

modulated light–absorption of amplitude. The recorded signal is proportional to the 

http://www.arm.gov/
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concentration in volume of light-absorbing particles with diameter size< 300 𝑛𝑚, and it is 

proportional to the surface of particles with diameter size> 300 𝑛𝑚 (Giechaskiel et al., 

2014c). Lack et al. (2006) built up a very sensitive method to estimate aerosol absorption at 

532 𝑛𝑚 particle diameter size, with efficient response time by applying photoacoustic 

absorption spectroscopy. It tested the variation of particle under different ambient 

temperature, pressure and relative humidity. Moreover, it has been selected to measure a 

condensation nuclei counter (CNC) and PM number, and considered as the most suitable 

technique. 

1.2.2.1.2. Gravimetric Method 

According to the gravimetric method, the particle mass concentration (PMC) is obtained by 

weighing the filters both before and after sampling time. The filter gathers PM in different 

granulometric fractions (nucleation, soot and coarse modes), unless there is an impactor or 

cyclone to eliminate larger particles (Giechaskiel et al., 2014c). Determination of PM mass 

can be modified depending on the conditioning conditions of the filter. Accordingly, 

Giechaskiel et al. (2014c) and Nussbaumer et al. (2008) depicted out that the filters are 

commonly packed under controlled conditions of relative humidity and temperature. 

Gravimetric method can collect particles and assess their concentration. For completed 

analysis, other techniques are required like Transmission Electron Microscopy (TEM) and 

Scanning Electron Microscopy (SEM). The highest resolution obtained in SEM depends on 

several factors, such as the interaction of the sample with the volume of the electron beam and 

the electron spot size. While it is unable to provide atomic resolution, some 𝑆𝐸𝑀𝑠 can reach 

resolution below 1 𝑛𝑚. Actually, full sized 𝑆𝐸𝑀𝑠 contribute resolution size range 1 − 20 𝑛𝑚 

whereas desktop systems can produce a resolution of  20 𝑛𝑚 or more.  

The 𝑇𝐸𝑀 is considered to be the most used technique in characterizing nanomaterials in 

electron microscopy. The image and the chemical information of nanomaterials at a spatial 

resolution similar to the level of atomic dimension are produced using 𝑇𝐸𝑀. More details 

were provided in Kumar et al. (2019).  

The cascade impactor is among the most popular gravimetric instruments for measuring 

particle size distribution in mass. This instrument activates based on the inertial classification 

of particles. Vincent (2007) revealed that the aerosol sample moves through a succession of 

stages. In each stage, an air jet including the aerosol attains the impacting plate and particle 

size larger than the cutoff diameter for the phase are collected. Particles with small size 
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diameter pursue the gas flow surrounding the collection plate and are received in the next 

phase. This phenomenon continues until particles with small size diameter are eliminated in 

the after-filter. The weakness of the conventional Cascade Impactors is that it is unable to 

select particles smaller than  0.4 µ𝑚. Another family of Cascade Impactors is based on Micro-

Orifice Uniform Deposit Impactor (𝑀𝑂𝑈𝐷𝐼). It collects particles with size diameter smaller 

than 0.056 µ𝑚 and considered as an efficient and accurate Cascade Impactors (Venkataraman 

and Rao, 2001).  

 

1.2.2.1.3. Microbalance Methods 

Giechaskiel et al. (2014c) outlined that when the particles are gathered, over the surface of an 

oscillatory microbalance, this latter use the transformation of the resonance frequency to 

measure the 𝑃𝑀. There are two-principal measurement instruments applying the 

microbalance method: The Quartz Crystal Microbalance (𝑄𝐶𝑀) and the Tapered Element 

Oscillation Microbalance (𝑇𝐸𝑂𝑀). 

 

-  Quartz Crystal Microbalance (QCM) 

Quartz Crystal Microbalance (QCM) is a highly sensitive mass balance that estimates in the 

order of nanogram to microgram of changes in mass per unit area. In QCM, the quartz crystal 

has a piezoelectric property of changing its resonance frequency when there is a small 

addition of mass in its surface (Giechaskiel et al., 2014c). In addition, it is able to allow the 

user to evaluate small mass changes on the surface of covered quartz crystal. 

 

- Tapered Element Oscillation Microbalance (TEOM) 

Particulate matter assessing systems that use 𝑇𝐸𝑂𝑀 technology are gravimetric instruments 

defining ambient air by continuously weighing the filter at a constant flow rate and 

calculating near real-world mass particulate mass concentration. It takes continuous real-time 

mass measurements of particulates with the Thermo Scientific ™ 1405 𝑇𝐸𝑂𝑀™. This 

instrument measures 𝑃𝑀1, 𝑃𝑀2.5 and 𝑃𝑀10 airborne particulates with accurate short-term 

precision. 

A pump draws a sample inside the instrument at 16.7 𝑙. 𝑚𝑖𝑛-1
 by an inlet in order to allow 

only particles of the intended size range to exceed through. This air stream is shared so that 

3 𝑙/𝑚𝑖𝑛 of sample is conducted to the tapered component and the remainder will be sanded to 

exhaust. In this context, Giechaskiel et al. (2014c) affirmed that placement of 𝑇𝐸𝑂𝑀 in 
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aerosol measurement in mobile source (i.e. the vehicle) was a failed method that is related to 

problems with pressure changes, humidity and overload.  On the contrary, Nussbaumer et al. 

(2008) outlined that the 𝑇𝐸𝑂𝑀 is an efficient instrument for real-time measurements of 

𝑃𝑀2.5 and 𝑃𝑀10 during biomass combustion. Other published studies have used the 

𝑇𝐸𝑂𝑀 for continuous 𝑃𝑀2.5 and 𝑃𝑀10 sampling (see for instance, Jiang and Bell., 2008; 

Elsässeret al., 2012).  

 

1.2.2.2. Size distribution measurements methods 

Size distribution measurement methods evaluate the aerosol size, that can be illustrated by 

diameter (aerodynamic, mobility) and the aerosol concentration.  

Amaral et al. (2015) showed that the measurement of particle size distribution is terminated 

from a conjunction of several measuring instruments.  

 

- Dekati Low Pressure Impactor (𝑫𝑳𝑷𝑰) 

The 𝐷𝐿𝑃𝐼 is consisted of 14-stage cascade impactor that is selected to measure airborne 

particle mass size distribution. It classifies and measures particles into 14 size fractions in the 

range of 16 𝑛𝑚-10 𝜇𝑚at a flow rate of 10 𝑙/𝑚𝑖𝑛. In each size fraction, the particles are 

assembled on 25 𝑚𝑚 collection substrates that are weighed before and after the sampling to 

acquire size distribution of the particles gravimetrically. This instrument can be applied in 

several particle measurement applications and the high temperature version can be warmed up 

to 180 °𝐶 for high temperature aerosols and direct sampling (www.ecotech.com). Rovelli et 

al. (2017) collected particle with size- segregated range 0.028– 10 µ𝑚. Results revealed high 

level of agreement between co-located Harvard type 𝑃𝑀2.5 Impactor and 𝐷𝐿𝑃𝐼, allowing 

them to be selected as characterized and comparable by a reciprocal predictability. 

 

- Differential mobility spectrometers (𝑫𝑴𝑺) 

The differential mobility spectrometer (𝐷𝑀𝑆) employs electrical mobility measurements to 

measure number spectra/particle size in the range of 5 𝑛𝑚-2.5 µ𝑚.  Considering the 

classification of particles in relation to their differing electrical mobility integrates in parallel, 

the 𝐷𝑀𝑆 series is capable to provide the fastest available number/size spectral measurement. 

The user interface prepares the spectral data in real-world to output surface area or number, 

particle mass and basic spectral information. Available studies demonstrated that 𝐷𝑀𝑆 is 

https://scholar.google.com/citations?user=e2a0wjEAAAAJ&hl=fr&oi=sra
http://www.ecotech.com/
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among the most used spectrometers based on particle mobility (Hosseini et al., 2010; Hossain 

et al., 2012).  

 

- Fast Mobility Particle Sizer (𝑭𝑴𝑷𝑺) 

The fast mobility particle sizer (𝐹𝑀𝑃𝑆) is characterized by a wide dynamic concentration 

range and flexible data management capabilities, which makes it more suitable for a variety of 

applications than other instruments (i. e. environmental research, indoor air quality tests, 

urban canyon studies, inhalation toxicology studies, etc.). It quantifies particles in the range of 

5.6 − 560 𝑛𝑚 with 1 𝐻𝑧 time resolution. This instrument provides 32 resolution channels. It 

has the same electrical mobility measurement technique compared to the 𝑆𝑀𝑃𝑆 spectrometer. 

However, alternately of a 𝐶𝑃𝐶, the 𝐹𝑀𝑃𝑆 spectrometer employs multiple, low-noise 

electrometers for particle detection. It operates at relatively high flow rate (10 𝑙/𝑚𝑖𝑛) to 

reduce diffusion losses of nanoparticles and ultrafine. In addition, it operates at ambient 

pressure to avoid evaporation of volatile particles, and needs no consumables. Several studies 

in different fields have used the 𝐹𝑀𝑃𝑆 (i.e.Belkacem et al., 2020;Beji et al., 2020).  

 

-  Scanning Mobility Particle Sizer (SMPS) 

The scanning mobility particle sizer (𝑇𝑆𝐼 𝑆𝑀𝑃𝑆) has contributed gain new observations in 

particle research and facilitated with calibrating reference material and other instruments 

related to aerosol. The 𝑈𝑆 National Institute of Standards and Technology (𝑁𝐼𝑆𝑇) and other 

reference laboratories applied the 𝑇𝑆𝐼 𝑆𝑀𝑃𝑆 for submicrometer particle size distribution 

measurements. The 𝑆𝑀𝑃𝑆 spectrometer is a nanoparticle sizer able to estimate the size 

distribution of airborne submicron particles with acceptable precision. It combines single 

particle counting with electrical mobility sizing to provide nanoparticles concentrations in 

discrete size channels. Users may select among three-differential mobility analyzers (𝐷𝑀𝐴𝑠), 

two-different neutralization techniques and seven 𝐶𝑃𝐶𝑠, enabling measurement in the range 

of 1 𝑛𝑚 to 1 𝑚. When the  𝑆𝑀𝑃𝑆 is coupled with an Aerodynamic Particle Sizer (𝐴𝑃𝑆) or 

an Optical Particle Sizer (𝑂𝑃𝑆), the continuous sampling range can be extended up to 20 µ𝑚 

or 10 µ𝑚, successively. 

Nussbaumer et al. (2008) and Giechaskiel et al. (2014c) confirmed that the𝑆𝑀𝑃𝑆  is the most 

efficient and precise instrument for high-resolution size distribution and number of particles 

from vehicle exhaust. They added also that the  𝑆𝑀𝑃𝑆 has many versions, where the size 

range extends from few nanometers to few micrometers. 
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- Electrical Low-Pressure Impactor (𝑬𝑳𝑷𝑰) 

The Dekati high-resolution ELPI®₊ is a developed version of the widely used 

𝐸𝐿𝑃𝐼 instrument. The high resolution of this instrument combines the data inversion 

algorithm with features of the 𝐸𝐿𝑃𝐼 ®+₊ that gives real-time size distribution and particle 

number up to 500 size classes in the range of  6 𝑛𝑚 –  10 µ𝑚. Other high resolution 𝐸𝐿𝑃𝐼® + 

features that provide the possibility to characterize chemical composition of size categorized 

particles after the real-time sampling, robust structure and wide particle sample concentration 

range. In this context, Coudray et al. (2009) and Beji et al. (2020) demonstrated that particle 

size distribution is rapidly and easy attained using an 𝐸𝐿𝑃𝐼 for biomass combustion and tire 

and road wear particles (non-exhaust particle emissions), respectively. According to Vincent 

(2007), the particles are electrically charged as they are aspirated in the 𝐸𝐿𝑃𝐼. For this, 

Giechaskiel et al. (2014c) clarified that charging is performed by a unipolar corona charger. 

Charged particles progress through a low-pressure Cascade Impactor constituted by gathering 

steps electrically isolated (Amaral et al., 2015).  

 

- Aerodynamic Particle Sizers (APS) 

Aerodynamic Particle Sizer (𝐴𝑃𝑆™) is used to measure aerodynamic sizes. As revealed by 

Hosseini et al. (2010), APS provides real-time aerodynamic measurements with high 

resolution of particles from size ranging from 0.5 to 20 µ𝑚. This particle sizer estimates 

equally light scattering intensity in the equivalent optical size range of 0.37 to 20 µ𝑚. This 

instrument employs a patented, double-crest optical system for unequaled sizing accuracy. 

Furthermore, it provides an improved signal processing and redesigned nozzle configuration. 

This results in an improved accuracy of mass-weighted distribution, bigger small-particle 

sizing efficiency, and virtual elimination of false background counts. 

 

- Laser Aerosol Spectrometer (𝑳𝑨𝑺) 

The LAS (𝑚𝑜𝑑𝑒𝑙 3340) employs patented intra cavity laser and a wide-angle optics to 

measure the number and size concentration of airborne particles. It characterizes a monotonic 

response that concerns to light scattering intensity in the Mie range for efficient and precise 

resolution. 

This commercial instrument is unique in its capability to estimate both sub and super micron 

particles in wide range size, making it an effective workhorse in any laboratory. It can 
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measure concentrations up to 1.8 × 104# 𝑐𝑚-3
 and particles in the range 0.09 − 7.5 µ𝑚 at a 

sample flow rate 0.1 𝑙. 𝑚𝑖𝑛−1. Particle size distributions can be measured at a sampling time 

of about 1 𝑠 (TSI Inc. www.tsi.com ).  

 

-Ultrafine particle (UFP) 

The UFP Monitor (model 3031) were designed to estimate ultrafine particles long-term 

strongly recommended in air quality monitoring networks. It describes the 𝑃𝑁𝐶 in six size 

classes in the size range between 20 and 500 𝑛𝑚 and needs only little maintenance. With six 

size classes, the 𝑈𝐹𝑃 lies between 𝑆𝑀𝑃𝑆™ spectrometer, which provide > 100 size classes, 

and 𝐶𝑃𝐶s that describe total number concentration (i.e. without any information about sizing). 

It is able to change in aerosol concentration and detect nucleation events. The data can easily 

be inserted into presented data acquisition systems, are tamper-proof, and remotely accessible 

(TSI Inc. www.tsi.com).  

 

- GRIMM nanoparticle measuring systems 

There are several versions in 𝐺𝑅𝐼𝑀𝑀 Aerosol (i. e. 

𝐺𝑅𝐼𝑀𝑀 1. 107, 𝐺𝑅𝐼𝑀𝑀 1.108, 𝐺𝑅𝐼𝑀𝑀 1.109) which are not able to detect particle with 

small size diameter. The newest version is the PSMPS combining GRIMM SMPS+C system 

with the Airmodus Particle Size Magnifier (𝑃𝑆𝑀). It is able to measure the number size 

distributions starting at 1.1 𝑛𝑚.  

The measurement of aerosol number size distributions started from the sub 2 𝑛𝑚 size range 

for understanding the basic phenomenon of new particle formation (Kulmala et al., 2013). 

Measuring capacity and time-response of the recent GRIMM versions are summarized in 

Table 1.2. 

 

 

 

 

 

 

 

 

http://www.tsi.com/
http://www.tsi.com/
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Table 1. 2: Features of GRIMM aerosol instruments for measuring particle number 

distributions and concentrations. 

 

 

Instruments 

 

 

Size range 

(𝑛𝑚) 

 

Sampling rate (𝑠) 

 

Detected 

diameter 

 

Detectable (min-max) 

concentrations (#/

𝑐𝑚3
) 

 

𝐺𝑅𝐼𝑀𝑀 𝑆𝑀𝑃𝑆 + 𝐶 

 

5-1110 

 

1 

 

Dp
7
 

 

1-10
7
 

 

 

𝐺𝑅𝐼𝑀𝑀 𝑊𝑅𝐴𝑆 

 

 

5-32.000 

 

1(CPC) ; 

110 (DMA) ; 

6 (Aerosol 

Spectrometer) 

 

Dp 

 

Dp and Da
8
 

 

 

1-10
7
 

 

𝐺𝑅𝐼𝑀𝑀 𝑆𝑀𝑃𝑆 + 𝐸 

 

0.8-1110 

 

0.2(T90) 

 

Dp 

 

 

100-10
7
 

 

𝑃𝑆𝑀𝑃𝑆 (𝑆𝑀𝑃𝑆 +

𝐶 𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑃𝑆𝑀) 

 

1.1 -55 

 

< 3 s (T10-T90) 

 

Dp 

 

10
7
 

 

1.2.2.3. In use compliance/in service conformity 

There are limited number of commercially 𝑃𝑀 − 𝑃𝐸𝑀𝑆 equipment based on Diffusion 

Charger (𝐷𝐶), 𝑄𝐶𝑀 with parallel filter, and 𝑃𝐴𝑆𝑆 with parallel filter. High correlation with 

                                                 
7
Dp=Electrical mobility Equivalent diameters 

8
 Da= Aerodynamic equivalentdiameters 
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low bias was found for the 𝑃𝐴𝑆𝑆 equipment (Johnson et al., 2011), even for emission rates at 

the regulatory limit (Khan et al., 2012). In other research, the 𝑃𝐴𝑆𝑆 has been applied 

successively for on-board testing (Durbin et al., 2007). The 𝑃𝑀– 𝑃𝐸𝑀𝑆 is very sensitive to 

use and many problems might be present including operational problems such as software 

bugs, in use conditions problems as mechanical and electrical connections. 

Recent commercial 𝑆𝑃𝑁 − 𝑃𝐸𝑀𝑆 instrument is considered as "black box" where linearity 

and efficiency tests have to be controlled with thermally stable soot same as aerosol. 

The efficiency of this instrument is controlled with monodisperse aerosol (Giechaskiel, 2018). 

According to the author, the simplest forward way is to control the efficiency of the complete 

𝑃𝑀 − 𝑃𝐸𝑀𝑆. However, controlling the particle detector and the thermal pre-conditioning of 

the 𝑃𝑁 − 𝑃𝐸𝑀𝑆 independently is also acceptable. In the second case, the two-results have to 

be combined in one penetration efficiency. For the linearity control, generally polydisperse 

aerosol is employed in order to achieve high concentration levels. The main measurement for 

the efficiency instruments includes (Fig.1.2):  

 

- Bipolar chargers to conditioning the aerosol for the Differential Mobility Analyzer 

(DMA) and also for the PN-PEMS particle detector; 

 

- A DMA for obtaining particles of the regulated electrical mobility diameters; 

 

- A reference instrument to estimate the absolute concentration of the induced 

monodisperse particles. 

 

Figure 1. 2: Features of GRIMM aerosol instruments for measuring particle number 

distributions and concentrations. 
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Instead of PN-PEMS only, the particle detector or other parts of the PN-PEMS could be 

controlled. The second neutralizer is essential only when the PN-PEMS has a DC based 

particle detector. Instead of ejector pump, Mass Flow Controller (MFC) with a mixing orifice 

could be used (Giechaskiel, 2018). 

1.2.2.4. Discussion of the capabilities of the equipment and future 

needs 

As discussed above, there are several types of commercial instrument for measuring 

particle number distribution and concentrations. This current review summarized the 

characteristics of the major particles measuring instruments to guide the researchers in 

choosing the appropriate instrument to meet the objective of their study (Table 1.2, Annex1). 

Problems that need to be inspected in applying such equipment in any regulatory framework 

include time-response, portability, robustness for unattended operation over long sampling 

time, maintenance requirement, calibration, cost and size range (Giechaskiel et al., 2014c).  

Real-time particle measurement is the favorite method sampling since it provides processes 

such as combustion to be observed. Moreover, instruments that quantify particle in real-time 

usually possess an automated system for recording data.  Another feature that must be 

checked during the selection of the 𝑃𝑀 instrument is whether a dilution system is required. 

Dilution system can mitigate temperature and particle concentration of the combustion gas. 

Accordingly, the integration of a dilution system contributes to a representative sampling and 

more realistic of 𝑃𝑀 emissions (Amaral et al., 2015). Besides, this later mentioned system 

provides considerable durability for measuring equipment because of the requirements of the 

analyzers entry. Thus, the integration of a dilution system in such instruments becomes an 

absolute necessity like the example of  𝐷𝐿𝑃𝐼.  

The increase of noise level of a given equipment is mostly related to the increase in sampling 

rate.  Accordingly, selection of a sampling frequency and suitable equipment depends 

essentially on the noise level of the instrument and the objectives of any individual study.  

Methods applying filters are not precise, while the most important advantage of measuring 

particle employing filters and conventional Cascade Impactors is the capacity to perform a 

chemical analysis (Amaral et al., 2015). Sampling related to ultrafine particle is essential, 

notably in health-related studies. To this end, the most recommended instrument is to measure 

the particle number concentrations, as  𝐹𝑀𝑃𝑆, 𝑆𝑀𝑃𝑆, 𝑂𝑃𝐶, 𝐸𝐿𝑃𝐼, and 𝑃𝑆𝑀𝑃𝑆 (Amaral et al., 

2015).  
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It comes out the importance to choose the most suitable instrument for a specific case study. 

Thus, it is mostly important to set a standard protocol for measuring nanoparticles allowing 

therefore possible comparison between different available results.  

1.3. Ambient environnemental conditions effects on 

nanoparticle concentrations 

The contribution of road traffic on nanoparticles was strongly correlated to several 

parameters. This review gathers the most important and significant factors that have real 

impact on nanoparticles. For example, weather conditions (wind speed, wind direction and 

ambient temperature/relative humidity) (Charron and Harrison 2003; Virtanen et al. 2006; 

Casati et al. 2007; Belkacem et al. 2020), then, the distance from the road (Kittelson et al. 

2004; Belkacem et al. 2020) have been taken into account in this review. Furthermore, height 

above the ground (Zhu and Hinds 2005; He and Dhaniyala 2012; Belkacem et al. 2020) has 

also been considered for a complete comprehensive analysis about factors having serious 

impact on nanoparticles as many people live in different apartment floors level with different 

height above the ground at urban area. 

1.3.1. Weather conditions 

Particle number size distribution and nanoparticle concentrations in traffic-influenced 

environments are strongly affected by weather conditions including wind speed and direction, 

ambient temperature, relative humidity (𝑅𝐻), and precipitation. Wind speed influences 

atmospheric resuspension, mixing and dispersion. Nanoparticle concentration reduces 

exponentially with wind speed. This is because high wind speed leads to better mixing and 

higher coagulation. Scavenging phenomenon and deposition are discovered at higher wind 

speed inducing a decrease in particles number (Arnold et al., 1999; Kumar et al., 2008).  

High concentration level appears practically downwind rather than upwind directions from 

the road surface. Particles with size diameter greater than 100 𝑛𝑚 illustrates a ―U-Shaped‘‘ 

variation accompanied with wind speed in the range of  5 − 10 𝑚. 𝑠−1.  𝑃𝑁𝐶s with size range 

between 30 − 100 𝑛𝑚 reduce by 104 normalized counts per cubic centimeter as a result of 

wind speed increase (Arnold et al., 1999). Harrison et al. (2016) demonstrated no obvious 

relationship between the diameter and the meteorological conditions, with the exception of 

the first size diameter.  Increasing wind speed leads to a reduction of the travelling time 

between the receptor and the source, causing therefore less time for evaporation. However, it 
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induces an increase of the dilution and turbulence leading in turn to a rapid dilution of the 

vapor component. Consequently, the concentration gradient between the particle surface and 

the ambient air is increased (Harrison et al., 2016). In addition, Silva et al. (2020a) 

demonstrated that particle mass concentrations 𝑃𝑀 (𝑃𝑀2.5 and 𝑃𝑀10) rate is strongly 

influenced by wind speed. 

The increase of solid particle number emissions is related to the decrease of the 

ambient temperature (Giechaskiel et al., 2015). In fact, during cold-start particles may be (1) 

semi-volatile material regenerating oxidation as the catalytic converters are not able to be 

evaporated in the SPN system and have not achieved the light-off temperature or (2) Blow-out 

of loose non-volatile solid particle deposits, since the filter exhibited to strongly transient 

operation compared to thermal and flow conditions (Giechaskiel et al., 2007). Giechaskiel et 

al. (2015) outlined that vehicle emissions with gasoline direct injection (𝐺𝐷𝐼) increased by 

160% when tested with the Worldwide Harmonized Light Vehicles Test Cycles (𝑊𝐿𝑇𝐶) at -

7°𝐶 as a replacement of 23°𝐶. The 𝑆𝑃𝐶 emissions strongly decrease over time with a few 

exceptions like cold start cycles over low-temperatures. In the study developed by Harrison et 

al. (2016), it was found that, there is no relationship between diameter and ambient 

temperature/relative humidity with a small range in air temperature of [12 − 18°𝐶]. In 

contrast, Rankko and Timonen (2018) affirmed that the volatility of ―liquid‖ particles 

produced in the cooling dilution is higher than that of ―solid‖ particles in the presence of high 

temperature. This means that particles induced during the cooling dilution of exhaust can 

disappear or evaporate when the particles are aged in the atmosphere (Harrison et al., 2012b). 

In addition, several studies demonstrated that higher nanoparticles concentrations are related 

to lower ambient temperatures, and relate this result with strengthen atmospheric nanoparticle 

formation from road traffic emitted gaseous compounds (Charron and Harrison, 2003; 

Kittelson et al., 2003; Pirjola et al., 2006). In the same context, Olivares et al. (2007) have 

proved that 𝑃𝑁𝐶s doubled with a sharp decrease in ambient temperature. Recently, for 

particle number concentration (> 10 𝑛𝑚), it has been shown that particle size distribution 

was dominated by nanoparticles in both summer and winter seasons (Saha, et al., 2018). 

However, in summer-time, the concentration reaches its highest point close to 10 𝑛𝑚 particle 

size; while in winter-time the peak concentration was approximately 15 − 20 𝑛𝑚. In other 

hand, roadside particle study reported 1.8 − 3.4 times lower 𝑃𝑁𝐶s in summer than in winter 

(Pirjola et al., 2006). Similarly, Schneider et al., (2020) confirmed notably higher levels of 

𝑃𝑀1 in winter-time than in summer-time. 
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Rönkkö et al. (2017) and Hietikko et al. (2018) have demonstrated a vast contribution 

of particles with size diameter lower than 10 𝑛𝑚 compared to the total particle number of 

road aerosol and pronounced contribution of particles with size diameter sub-3 𝑛𝑚. 

In order to understand the effect of the relative humidity independently of ambient 

temperature, Vehkamaki et al. (2003) have tested the variation of PNCs with the same 

ambient temperature and four different relative humidity values.  They demonstrated that 

particles with size diameter greater than 3 𝑛𝑚 were more influenced by high relative humidity 

than under high ambient temperature. Olivares et al. (2007) have also reported high 

nucleation particle concentrations (between 5 and 30 𝑛𝑚 (𝑁5– 30)) during very humid 

period. Similarly, Hussein et al. (2006) outlined that with nucleation and Aitken modes, 

particles increase three-times when the ambient temperature drops from 280 𝐾 to 250 𝐾.  

Rainy weather conditions have been found to reduce the roadside ambient 𝑃𝑁𝐶s, 

although despite the fact that weather conditions may have adverse effects. In fact, rainy 

weather clean urban atmosphere by reducing the condensation sink induced by particles, 

resulting in turn to an increase of 𝑃𝑁𝐶s in road environment. Similarly, Easter and Peters 

(1994) and Charron and Harrison (2003) registered high nanoparticle concentrations 

immediately after several rainy days. However, an Indian study was found exactly the 

opposite precipitation effect, where particulate matter increased with the decrease of rainfall 

precipitation (Deshmukh et al., 2013). The highest particle number concentrations of the first 

hour after rain might be explained by the rapid drop in ambient temperature during 

precipitation. This temperature reduction induces high saturation ratio for semi-volatile 

species. Elevated saturation ratio along with limited surface area of particles allows formation 

of new particles. This results in a significant increase of 𝑃𝑁𝐶s.  

1.3.2. Distance from the road effects 

This section summarizes the most important results available in literature dealing with 

distance from the road effects on nanoparticle emissions. The spatial extent concept is known 

as the distance that separate the source of nanoparticle emissions (i.e. road traffic) and 

population and individuals‘ groups. An Austrian study measured the number of 𝑈𝐹𝑃s in two-

different sites in the vicinity of major roads (Hitchins et al., 2000). The obtained results 

demonstrated that particles with size diameter smaller than 0.7 µ𝑚 decreased significantly 

with the increase of distance from the road. At a distance of  150 𝑚, the concentration 
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decreases about 50 % of the maximum induced at 15 𝑚 from the source. In addition, the 

fraction of particles with various morphologies of 50 𝑛𝑚 particles are intensified when the 

distance from the road is increased (Rönkkö and Timonen, 2019). More recently, Belkacem et 

al. (2020) have conducted an experimental study to analyze the effect of the distance between 

the sampling site and the urban road traffic. Three different positions from the emission 

source were selected (𝑑1 = 6.60 𝑚, 𝑑2 = 30 𝑚 and 𝑑3 = 330 𝑚). The authors demonstrated 

that the relationship between PNCs and distance from the source could be explained by a 

negative linear polynomial model with 95 % confidence bounds and a high reliability 

coefficient of 96.69 %.  It is worthy to note that similar results have been obtained by several 

previous published studies (see for instance, Zhu et al., 2002; Kittelson et al., 2004). 

1.3.3. Height above the ground effects 

As far as the authors knowledge is of concern, the effect of vertical and horizontal dispersion 

on the particle concentration profiles near roads is not sufficiently studied. However, this is a 

critical parameter to take into account, since, in urban areas, all population lives in apartments 

with different floors. The measurement of particle concentrations gives an overview of the 

level at which particles remain active. 

A field measurement study conducted in Germany outlined that 𝑃𝑁𝐶s downwind of a 

motorway exponentially decreased with increasing height from 5 to 30 𝑚 above the ground 

(Imhof et al., 2005). Moreover, very restricted 𝑃𝑁𝐶 information on heights less than 5 𝑚 

above ground are found, despite the fact that this height encompasses a critical zone for 

pedestrian and cyclist exposure. Recently, Belkacem et al. (2020) have conducted 

measurements at heights above ground of less than 3 𝑚 due to this critical spatial interval for 

cyclists and pedestrians‘ health. The authors examined the effect of height on 𝑃𝑁𝐷s. Two-

measurement days (𝐷2 and 𝐷3) were considered with two-heights: 𝑕1 = 2.03 𝑚 (horizontal 

position), and 𝑕2 = 2.82 𝑚 (vertical position) above the road pavement. The obtained results 

demonstrated high nanoparticle number with channel size diameters in nucleation mode 

primarily in 10.75 𝑛𝑚, reaching up to 5.61 × 103  #/𝑐𝑚3 at height 𝑕1, and 3.23 ×

104  #/𝑐𝑚3 at height 𝑕2. Similarly, Goel and Kumar (2016) have obtained the same results 

with four different heights less than 4.7 𝑚 above the ground. Quang et al. (2012) depicted out 

that particles with a diameter smaller than 30 𝑛𝑚 are strongly influenced by height. The 

resultant increase occurred in the nucleation mode (diameter less than 30 𝑛𝑚), while 

decreasing above 30 𝑛𝑚 due to new particle formation event tied to the amount of global 
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radiation. In fact, nucleation mode practically consisting of nitrogen, volatile organic and 

sulfur compounds; it may be extracted not only from traffic exhaust emissions or non-exhaust 

emissions but also from regional particle nucleation. 

1.4. Nanoparticles effects on human health, environment and 

climate 

1.4.1. Health impacts 

This paragraph illustrates the available published results regarding the effect of nanoparticles 

on human health and  

environment issues. It has been demonstrated that regularly exposure to nanoparticles may 

harmfully affect human health (Feng et al., 2020). The main process underlying the 

pathological consequences of particles in the cardiovascular system and lungs is 

inflammation, asthma, involved in at herothrombosis, chronic abstractive lung disease, cancer 

and pulmonary fibrosis (Donaldson and Tran, 2002; Silva et al., 2020b). Nel et al. (2006) 

explained that nanoparticles penetrate human body through the lung, skin and gastrointestinal 

tract. Their small size diameter permits them to be breathed profoundly into the lungs where 

they are able to enter the vascular space and pulmonary interstitium to be absorbed 

immediately into the blood stream, and penetrated the alveolar epithelium (Terzano et al., 

2010). They may also be displaced within the body to the axial nerve system, the brain to 

organs and into the systemic circulation like the liver (Helland et al., 2007). Figure 1.3 

summarizes the system health effects of nanoparticles as illustrated in Terzano et al. (2010).  

     

 

 

   

     

 

Figure 1. 3: Systemic health impacts of ambient nanoparticles (Terzano et al., 2010). 
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The potentially of particles to prolong, initiate or worsen inflammation can be considered as a 

key property. Several researchers have investigated the pro-inflammatory effects of 𝑁𝑃s, 

owing to their capability to cause inflammation. The first dominant findings were that 

nanoparticles have a more pronounced effect on cell stimulation, cell damage and 

inflammation than an equal mass of particles of the same materials with bigger size 

(Donaldson et al., 2000).  

Approximately 6 %, 18 % and 58 % of these deaths were related with lung cancer, acute 

respiratory infections and chronic obstructive pulmonary disease, and stroke and ischemic 

heart disease (World Health Organization, 2018). 

Solely, around 20 % of nanoparticles are eliminated once filed in alveolar regions in animals‘ 

subjects after 24 𝑕 exposure. On the contrary, about 80 % of particles greater than 

500 𝑛𝑚  could be eliminated (Oberdörster et al., 2005a). In the same context, Chalupa et al. 

(2004) discovered about 74% deposition of carbon ultrafine particles in asthmatic human 

subjects during 2 hours exposure.  

Surface area is the metric inducing the pro-inflammatory effects. This is evident in both vivo 

Duffin et al. (2002) and vitro Donaldson and Tran (2002), particles with different sizes 

generating inflammatory effects that are strongly linked to the surface area dose.  This surface 

area dose, linked to inflammatory response, is partially related to transition metals. However, 

it is also established with low toxicity materials and an ambiguity on cellular mechanism. 

Even with low toxicity, surface area has also the potentiality to produce oxidative stress and 

free radicals in cells that has nothing to do with transition metals. This is because there is no 

soluble toxic component that could mitigate the effect (Brown et al., (2000, 2001)). 

Toxicological studies have proved vehicular traffic associated organic ultra-fine particles and 

nanoparticles to be related with adverse human health like asthma exacerbation and 

pulmonary inflammation (Shao et al., 2017; Niu et al., 2020). In fact, internal combustion 

engines (ICEs) produce large quantity of 𝑃𝐴𝐻s that are divided between gas and particle 

phases. Moreover, gasoline exhaust includes lower proportions of volatile and semi-volatile 

𝑃𝐴𝐻s than that of diesel vehicles (Zhu et al., 2017). Rapid evolution may participate to the 

often-puzzling survival of newly constituted particles in mega-cities. These particles are 

produced at proportions consistent with sulfuric-acid–base nucleation and tend to grow at 

typical proportions (about 10 𝑛𝑚) with extremely high condensation, sinks that evidently 

should scavenge all of the tiny nucleated particles (Wang et al., 2019). 
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The low toxicity surface free radical effect is obvious in their potentiality to produce oxidants 

in cell-free chemical systems (Brown et al., 2001; Wilson et al., 2002). In cells, high surface 

area doses manifest to initiate inflammation passing by a number of pathways accompanied 

with important oxidative stress-responsive gene transcription. Oxidative stress extended in 

cells exposed to activation of oxidative stress-responsive (Mroz et al., 2008) and some 

nanoparticles types (Donaldson and Stone, 2007). 

Few studies supported particle surface area as an appropriate metric to evaluate human 

exposure whilst several others preferred particle number concentrations. In this framework, 

Maynard and Maynard (2002) revealed that higher surface area to mass ratio of ultrafine 

particles authorizes remarkable contact for adsorbed compounds to react with biological 

surfaces. Unlike to epidemiological studies that supported number concentration as a metric, 

Pekkanen et al. (1997) demonstrated incorporations between exposure to ultrafine particles 

and deficits in peak expiratory flow among asthmatic children. Moreover, other researches 

relate this exposition with cardiovascular diseases like cardiac-rhythm disturbance and heart 

attacks (Wichmann et al., 2000; Oberdörster et al., 2005b). Delfino et al. (2005) demonstrated 

indirect epidemiologic signs relating the adverse cardiovascular effects with ultrafine-

dominated fraction of fossil-fuel combustion particles. Several studies outlined that with a 

short-term exposure to ambient nanoparticles intensify existing cardiovascular and pulmonary 

diseases. Whereas, the increased risk of death and cardiovascular disease are strongly related 

to long-term duplicated exposure (Brugge et al., 2007). Stölzel et al. (2007) demonstrated a 

significant correlation between cardio-respiratory mortality and increased nanoparticle 

number concentrations (10 − 100 𝑛𝑚) applying time-series epidemiological analysis. 

Toxicological studies have proved the toxicity of nanoparticles, while very restricted 

epidemiological evidence was noticed on health effects. For instance, there is a very limited 

quantitative review of concentration-response functions for nanoparticles that could be 

applied in health effect evaluation. Furthermore, for fine and coarse particles there are also 

practically restricted epidemiological studies on the health impacts of ambient nanoparticles. 

Exposure of nanoparticle number concentrations harmfully affects human health. Owing to 

scarcity of data and the exact biological and chemical mechanisms of such nanoparticles that 

causes death or disease are not yet fully described and specified. This is clearly a field of 

nanoparticles research that needs more toxicological and epidemiological evidence. 
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1.4.2. Environmental impacts 

Visibility impairment is caused by build-up of the atmospheric particles that scatter or absorb 

light from the sun (Horvath, 2008). It decreases with wind speed and temperature and 

increases with atmospheric pressure and relative humidity (𝑅𝐻) (Tsai, 2005). At high 

𝑅𝐻 ( 90%), the light scattering cross-sectional areas of particles extend by uptake of water 

(Kumar et al., 2010).  

Several local and global scale studies have proved high correlation between reduction 

visibility and mass concentration of both 𝑃𝑀10 and 𝑃𝑀2.5 (Cheng and Tsai, 2000; 

Mahowald et al., 2007; Che et al., 2009). Particle sizes contribute to a critical role for the 

interaction with light, where larger particles have a strong association between mass 

concentrations and visibility impairment (Strawa et al., 2010). Composition and shape of 

particles are suitable for visibility limitation; particles including nitrate species, organic 

carbon and sulphate may cause 60 − 95 % of reduction, whereas carbon particles may 

participate with 5 − 40 % of overall visibility (Kumar et al., 2010). 

Despite the abundant number of carbonaceous and sulphate nanoparticles that are emitted by 

diesel vehicle notably in urban area, the role of nanoparticles in visibility is not sufficiently 

developed and established. Particles of these compositions limit visibility, implying that 

nanoparticles might be pertinent on visibility impairment.  However, the most comprehensive 

of nanoparticles role invisibility impairment is fundamental (Slezakova et al., 2013) and 

requires further advanced research.  

1.4.3. Climate impacts 

Variables that can impact on climate are generally known as 'radiative forcing'. Direct impacts 

correspond to the climate effects of the aerosol particles (Yu et al., 2006). The latter can 

absorb and scatter solar radiation. In fact, a fraction of the scattered radiation will be reflected 

back into space, resulting in a cooling process of the atmosphere. Particles with size diameter 

from 0.1 to 2 𝑚 are the most efficient at backscattering of solar radiation. The sized particles 

are the major factor governing the force of the direct effect. 

Black carbon (𝐵𝐶) belongs to a class of environment pollutants known as particulate matter 

(𝑃𝑀). 𝑃𝑀 compounds of soot liquid droplets, wood smoke particles and small particles of 

dust suspended in air. It has been demonstrated that 𝐵𝐶 is the second largest contributor to 
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global warming. If 𝐵𝐶 particles are combined into cloud droplets, the cloud droplet may 

evaporate owing to the local heating, and then lens influence of the water intensifies the 

absorption. This is known as semi-direct effect (Verheggen and Weijers, 2010; Seo et al., 

2020). 

1.5. Alternatives to increase sustainability in vehicular traffic 

Improving sustainable mobility is the major widespread objectives in transportation sector.  In 

fact, the term of sustainable mobility was deduced from the concept of "sustainable 

development".  According to the World Commission on environment and development, 

sustainable development is known as the "development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs". Equally, 

environmental sustainability is the aptitude to protect global ecosystems and conserve natural 

resources to keep human health and environment of the current and future generation. In this 

direction, we will be interested in three complementary factors that we believe essential to 

have a sustainable environment and mobility, namely road users, vehicle and infrastructure. In 

addition, as a solution to these problems, specific mitigation, improvements, prevention and 

compensation measures must be implemented shortly. 

- Vehicle technologies  

In order to reduce nanoparticles formation, the new emerging technologies refer mostly to 

particle filter which is expected to be efficient in the reduction of particulate emissions 

produced by both diesel particulate and gasoline injection engines. Furthermore, it is 

recommended to focus on ICEs fueled by alternative sources of fuels, such as fuel cell cars 

(Mac Kinnon et al., 2016), biofuels and flex-fuel vehicles. At this look, some studies 

considered that electric vehicles may reduce pollution (Condurat et al., 2017), while, they are 

the main source of non-exhaust emissions owing to their relative high weight (Timmers and 

Achten, 2016). In fact, the same source found that there is a positive relationship between 

non-exhaust 𝑃𝑀 emissions and weight. Generally, enhancing the vehicle characteristics leads 

to significant mitigation in atmospheric pollutants mainly of nanoparticle concentrations. The 

development of new composite materials, new polymers and so-called 'memory metals', 

which are lighter and more resilient as compared with conventional materials should also 

conduct to pronounced mitigations in quantities of burned fuels (Condurat and Patterson, 

2016). 
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- Infrastructure 

As vehicle technologies, infrastructure is an important factor to improve air quality in order to 

ensure a sustainable transport and environment. In the past few years, among the most 

important issues for urban areas is the problem of air quality degradation. The intensive 

increase of particle emissions proves the causality of the degradation (European Environment 

Agency, 2019). Mostly, the term of ''green infrastructure'' widely used and analyzed (See for 

instance, Bealey et al., 2007; Hewitt et al., 2020), has a positive impact on environment and 

air quality (Nowak et al, 2006), focusing particularly on suspended particles. In this context, 

Nowak and Heisler (2010) revealed that the green infrastructure mitigates pollution with 

suspended particles by filtration and absorption of particles.  

It is worth noting that very scarce number of studies were found focusing on the evaluation of 

the relationship between infrastructure and nanoparticles. More attention should be paid to the 

drainage system of roads particularly for the developing countries in order to favor the 

phenomenon of scavenging. In fact, during rainy season water is precipitated into the 

roadway, making cyclists and pedestrian exposed to nanoparticles for a long-time period.  

- Road users 

Road users is the most difficult and complex component as compared to the two-last 

mentioned factors (i. e. the infrastructure and the vehicle technologies).  In fact, each driver 

has his own driving style including rational (or economic driving mode) and aggressive 

driving mode. Driving behavior is strictly correlated to acceleration and deceleration 

maneuvers. Accumulation and coarse modes formed directly by incomplete combustion with 

level mostly during sudden vehicle acceleration and deceleration maneuvers (Beji et al., 

2020). Several policies have been imposed like the increase in fuel price. In fact, most drivers 

tend to save fuel by decreasing their vehicle speed by up to 5.5% (Levinson, 2010).   

Many recommendations may be forced to be implemented for urging the driver to follow a 

rational driving mode like; learning Eco-Driving (Training and Education), automated device 

to support driver‘s behavior and simple advice.  

Information as to how and when drivers should restyle their behaviors is very important to 

influence changes in their driving cycle (Jamson et al., 2015). Training and education in eco-

driving by a set of rules such as helping the drivers on when and how to accelerate, and how 
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to use the brake (Caulfield et al., 2014).  The recent technological evolutions in 

telecommunication have been made several innovations in traffic engineering (Orfila et al., 

2015). In this context, automated devices are integrated in some new vehicles providing real-

time information on the traffic state and thus, offering drivers the optimum operating speed 

(Keyvanfar et al., 2018).  

1.6. Conclusion 

The European vehicle exhaust regulation includes a solid particle number with size diameter 

greater than 23 𝑛𝑚 (𝑆𝑃𝑁 23) limited to non-road mobile machinery and heavy-duty and 

light-duty vehicles.  In fact, the majority of particle exhaust emissions are equipped with size 

diameter smaller than 23 𝑛𝑚 requiring a thoroughly revision of this regulation. On the other 

hand, the regulation did not include non-exhaust emissions (i.e. road wear, tire wear, brake 

wear and resuspension), despite their contribution exceeding particle exhaust emissions. 

Furthermore, particles lower than 23 𝑛𝑚 are strictly related to adverse health. The lognormal 

distribution is an efficient fit to the size distribution over a vast particle size diameter range in 

the nucleation, Aitken, accumulation and coarse modes. Each particle mode presents specific 

sources and characteristics. The size ranges mentioned for these modes vary frequently, but 

practically the largest proportion of particle number concentrations is present in nucleation 

and Aitken modes. 

Atmospheric nanoparticles may be induced from various sources. In this review chapter, we 

were only focusing on nanoparticles produced from road traffic as it contributes by the 

highest percentage. Human body exposure to vehicle nanoparticles depends on several 

variables including weather conditions (i.e. wind speed and direction, ambient temperature, 

relative humidity and precipitation), distance from the road traffic and height above the 

ground. The comparison of particle number and mass concentrations between different studies 

is an insufficient method due to the absence of standard protocol, methodologies and to 

dissimilarity in instruments. There are three different sampling measurement methodologies 

for measuring particle number and mass concentrations, namely laboratory, In-situ, and real-

world emissions measurements. Each of these mentioned sampling measurements has 

strengths and weaknesses. Real-world measurements help in the determination of continuous 

time-series data under real conditions (i.e. traffic conditions, climate conditions, road surface 

geometry).  This chapter illustrated practically the large majority of available commercial 

nanoparticles instruments in order to help researchers choosing the most suitable equipment 
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for nanoparticles measurement after having set the purpose of their research. In this review, 

all mentioned studies related to nanoparticles (i.e. characteristics, sources, sampling 

measurements, instrumentation) are analyzed in order to characterize the human health, 

environmental and climate impacts. In fact, ambient nanoparticles constitute an area of 

growing health concern. The magnitude of the effects of nanoparticles on environment and 

human health has still not been plainly understood. Limited answers from epidemiological 

researchers and exposure-response relationships in association to ambient nanoparticles make 

difficult to develop health guidelines. Aerosol instrument tool used in continuous real-world 

measurements is an efficient method as it could be reached in the short term. However, as a 

longer-term objective, equipment might be generated allowing also direct estimation of the 

toxic potential of the aerosol. This is a challenge to cooperate across the area of 

instrumentation design, toxicology and epidemiology. 

Predicting ambient air pollutants and 𝑃𝑁𝐶s is a critical research area for mitigating road 

transport emissions on environment. Artificial neural networks (𝐴𝑁𝑁s) were commonly being 

frequently used for the simulation of ambient air pollution and environment induced from 

road traffic.  
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Chapter 2. The influence of urban road traffic on nanoparticles:  

Roadside measurements 

2. 1. Introduction 

The presence of nanoparticles has been gradually increasing over the last few years, which 

has attracted increased interest from the relevant authorities in order to mitigate ambient air 

pollution. The total road traffic particles include both exhaust and non-exhaust particulate 

emissions. However, the focus is more oriented towards vehicle exhaust particle emissions, 

which lead to a continuous increase in total particulate emissions.  

Nanoparticles can be defined as particles <  300 𝑛𝑚 in diameter for two reasons: 1) this size 

range includes more than 99 % of all 𝑃𝑁𝐶𝑠 in urban road environments (Kumar et al., 

2009a); and 2) this range also encompasses the ultrafine sizes (< 100 𝑛𝑚), which cover up to 

80% of all atmospheric 𝑃𝑁𝐶𝑠 (Kumar et al., 2008b). The first nanoparticle emissions 

management policy was applied with the European Union's (𝐸𝑈) 𝐸𝑢𝑟𝑜 5 – 𝐸𝑢𝑟𝑜 6 vehicle 

emission standards (EU, 2008), which proposed a measurement suitable to particle size 

distributions between 23 and 2,500 𝑛𝑚 applicable to all light-duty vehicle (𝐿𝐷𝑉) categories 

(Kumar et al., 2010). Vehicles generate submicrometer exhaust particles that affect both 

human exposure and the air quality in urban particulate pollution environments, due to the 

extreme smallness of their size, capable to reach few nanometers (Virtanen et al., 2006). 

Diesel exhaust particles are known to be either solid carbonaceous agglomerate produced 

during an incomplete burning of combustible fuel, involving an ―accumulation mode‖ or 

―soot mode‖ created by the condensation and nucleation of semi-volatile material during 

exhaust dilution in the atmosphere (nucleation mode) (Harris et al., 2001; Seigneur et al., 

2009). On the other hand, non-exhaust sources, such as road surface particles, brake particles 

and tyre wear particles, induced from the interaction between road surface and tire have 

increased considerably. In this context, Kumar et al. (2013) categorized 11 vehicle non-

exhaust sources (𝑁𝐸𝑆) as significant sources of nanoparticle emissions into the atmosphere. 

Moreover, the same authors revealed that the nanoparticles from each vehicle non-exhaust 

source had dissimilar characteristics, owing to their different formation mechanisms. The 

increase in particle number concentrations (𝑃𝑁𝐶𝑠) in urban environments, particularly along 

heavily-trafficked roads and streets, has generated increasing interest in determining the 

quantification and contributing factors. Such steps are required in both developed and 
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developing nations in order to meet national air quality standards and ensure therefore 

sustainable highway environment. In this aim, the guideline stipulates that 𝑃𝑀2.5 must not 

surpass 25 𝑔/ 𝑚3 
as a 24 − 𝑕𝑜𝑢𝑟 mean or 10 𝑔/ 𝑚3

as an annual mean; moreover, 𝑃𝑀10 

must not surpass 50 𝑔/𝑚3 
as a 24 𝑕𝑜𝑢𝑟 mean or 20 𝑔 /𝑚3 

as an annual mean (WHO, 

2005). Furthermore, 𝐸𝑈 emission standards implemented the first particle number limit 

values on diesel vehicles in 𝐸𝑢𝑟𝑜 5  on January 2011, ( i.e. 6.1011# /𝑘𝑚 ). Subsequently, the 

particle number limit values from 𝐸𝑢𝑟𝑜 6 included both diesel and gasoline-powered 

vehicles, also at 6. 1011(# /𝑘𝑚). Ultrafine particles (diameter < 100 𝑛𝑚) account for approx. 

80 % of total 𝑃𝑁𝐶(Heal et al., 2012) and up to 90 % close to major roads (Choi et al., 2014). 

Ruuskanenet al. (2001) asserted that particle concentrations in terms of number should be 

measured in order to help developing a comprehensive assessment of urban air quality. In 

addition, Barrios et al. (2012) pointed out that the environmental and health impacts induced 

by the nanometric particles are being neglected despite their high numbers. This chapter 

serves as a continuation of the efforts made to analyze nanoparticles and to explain their 

major characteristics (𝑃𝑁𝐶 and 𝑃𝑁𝐷), by taking several variables into account: distance, 

height, traffic, wind speed, and wind direction. A study conducted by Morawskaet al. (2008) 

revealed that nanoparticles are expressed and measured in terms of concentration number per 

unit volume of air. These particles could be produced directly from combustion (primary 

particles) or from gas-to-particle conversion (secondary particles). The authors confirmed that 

the particle size depends on the process as well as the sources that lead to their formation. 

Both the size distribution and number of nanoparticles modify rapidly in the vehicle near 

wake, assumed as being due to the influence of several physical and chemical transformation 

processes (turbulence, condensation and distribution) induced during rapid turbulent dilution 

and mixing (Kumar et al., 2011). The vehicle wake contains of two-regions: 1) the near wake, 

which is characterized by a distance of about 10 𝑡𝑜 15 times the vehicle height; and 2) the far 

wake, which is a region above the near wake (Hucho, 1987). Moreover, the impacts of 

meteorology, ( i.e. temperature, wind speed and direction, and relative humidity), and road 

viewing installations and topography are all important factors in modeling the temporal and 

spatial variability of particle number and size distributions. The road structure plays an 

important role in particle dispersion. In fact, the initial dispersion of particles and pollutants 

from road traffic emissions may be affected by vehicle turbulence (Kalthoffet al., 2005; 

Mehel and Murzyn, 2015). These barriers are common characteristics of high-volume traffic, 

especially on thoroughfares running through high-density urban areas. Such barriers may 
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actually stop dispersion, increase initial mixing and turbulence, and enhance the level of 

deposition (Tan and Lepp, 1977; Veerabhadra Swamy and Lokesh, 1993). In this context, 

Pasquier and Andre (2017) demonstrated that just behind the barrier, concentrations are 

smaller and then rise at greater distances, with background concentrations being more 

extensive than without any barrier in place. Urban areas typically engender high particle 

concentrations due to dispersion being restricted by barriers (buildings). 

Kim et al. (2015) proved that wind direction constitutes a key parameter influencing particle 

dispersion. They in fact observed low pollutant concentrations on days with high wind speed, 

thus indicating a high dilution of air pollutants and dispersion from the line source. Several 

studies have estimated the dispersion of 𝑃𝑁𝐶𝑠 and size distributions at various distances from 

the source (road traffic) (see, for instance, Gramotnev and Ristovski, 2004; Pirjolaet al., 2006; 

Zhu et al., 2004). Most of these studies have measured 𝑃𝑁𝐶𝑠 at a distance varying from 

10 𝑡𝑜 300 𝑚. The available studies have demonstrated that distance from the source is 

inversely proportional to 𝑃𝑁𝐶. The current study is focused on measuring 𝑃𝑁𝐶𝑠 and 𝑃𝑁𝐷𝑠 at 

distances between source and sampling site ranging from 6.60 𝑚  to 330 𝑚. 

Imhof et al. (2005) showed that 𝑃𝑁𝐶𝑠 downwind of a highway increased with the height 

above ground being lowered from 30 𝑚 to 5 𝑚. To the best of the authors' knowledge, 𝑃𝑁𝐶 

information on heights less than 5 𝑚 above ground is lacking despite the fact that this height 

encompasses a critical zone for pedestrian and cyclist exposure. The current study has 

conducted measurements at heights above ground of less than 3 𝑚 due to this critical spatial 

interval for cyclists' and pedestrians' health. Furthermore, this study has determined 𝑃𝑁𝐶𝑠 at 

three distinct distances between source and sampling site, with a large margin ranging from 

6.60 𝑚 to 330 𝑚. Several studies have nonetheless taken the distance effect into account with 

small margins of less than 100 𝑚 (e.g. Goel and Kumar, 2016; He and Dhaniyala, 2012). 

Given the remarkable increase of nanoparticles in atmosphere from mobile sources, due to the 

increase in number of circulating vehicles and the intensive use of heavy-duty vehicles, the 

present study contributes to the air quality management program in the Bron area near Lyon 

(France) by means of roadside monitoring of 𝑃𝑁𝐶𝑠 and 𝑃𝑁𝐷𝑠. The effect of several 

parameters, namely the distance from traffic, the height above ground, the traffic volume, the 

wind speed and wind direction, was also investigated during this measurement campaign. The 

measurement periods were set for eight days during the summer season (June and July) 

covering different time durations depending on atmospheric conditions. Taking measurements 

on days with hot temperature or rainfall was avoided in order to preserve measurement 
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instrument safety. To the best of the authors' knowledge, this study represents the first 

initiative to comprehensively evaluate nanoparticles on major urban roads in the Bron-Lyon 

area. It also investigates continuous micro-scale particle distribution and numbers. The 

current study has highlighted the critical situation experienced in this area with regard to both 

short- and long-term effects. 

 

2. 2. Materials and Methods 

2.2.1. Study area 

Bron is a municipality within the Lyon Metropolitan Area in eastern France's Auvergne-

Rhône-Alpes region, with an average elevation of  696 𝑓𝑡. Its land area spans 10.3 𝑘𝑚², and 

it contained a population of 41,589 in 2016 (Insee Agency, 2016). 

The sampling site for this study was chosen to cover an array of distances from the source, 

heights from ground level, traffic volumes and atmospheric conditions (wind speed, wind 

direction, humidity and temperature) surrounding the selected study area. 𝑃𝑁𝐶𝑠 were 

resolved within the 5.6 − and 560 − 𝑛𝑚 range along the road at three fixed distances: 

𝑑1 = 6.60 𝑚, 𝑑2 = 30 𝑚, and 𝑑3 = 660 𝑚, sequentially at two above-ground heights: 

𝑕1 = 2.03 𝑚, and 𝑕2 = 2.82 𝑚. The road segment is located in the Bron-Lyon area and 

connects the city center with a business activity zone (see Fig. 2.1). 
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Figure 2.  1: Field study set-up 

 

2.2.2. Instrumentation and sampling 

Atmospheric nanoparticle number size concentrations and distributions were measured using 

a Fast Mobility Particle Sizer 
TM

 (𝐹𝑀𝑃𝑆 TM
) Spectrometer (𝑀𝑜𝑑𝑒𝑙 3091), once a second with 

a 10 𝐿/𝑚𝑖𝑛 aerosol inlet flow rate. All equipments have been calibrated before starting the 

sampling measurements. This equipment measures particles ranging from 5.6 𝑛𝑚 to 560 𝑛𝑚 

distributed across 16 channels per decade (32 channels of resolution in all) with a 1 − 𝐻𝑧 

time resolution. This set-up ensures users collect a full-size distribution of rapidly changing 

aerosols. The 𝐹𝑀𝑃𝑆 is a powerful and useful tool for monitoring particle exposure in a 

quickly changing environment due to a 1 𝐻𝑧 particle size distribution frequency and the 
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integration of a two-decade size distribution. It uses an electrical mobility measurement 

technique and multiple, low-noise electrometers for particle detection. This enables particle-

size-distribution measurements in real time, providing the unique ability to visualize particle 

events and dynamic changes in particle size distribution. The electric power of the 

instruments was generated with an electric power cable connected from the buildings of the 

center for studies expertise on risk, environment, mobility and development (𝐶𝐸𝑅𝐸𝑀𝐴) and 

the French Institute of Science and Technology for Transport, Development and Networks 

(𝐼𝐹𝑆𝑇𝑇𝐴𝑅) - Bron- Lyon according to the sampling position (𝑑1, 𝑑2, 𝑑3). The required 

electrical power of the 𝐹𝑀𝑃𝑆 is 50 𝑜𝑟 60 𝐻𝑧, 100 𝑡𝑜 240𝑉𝐴𝐶 and 170 𝑊 maximum. This 

equipment was chosen because it captures particles with a very small diameter up to 5.6 𝑛𝑚, 

i.e. a size that can easily enter into the respiratory and cardiovascular systems. Particle 

number concentrations are calculated as the total number of particles per unit volume of air 

sampled, in #/𝑐𝑚3(𝑛𝑢𝑚𝑏𝑒𝑟/𝑐𝑚3
). 

Meteorological variables, such as wind direction, wind speed (𝑘𝑚/𝑕), relative humidity (%) 

and air temperature (°𝐶), were extracted from the official French weather website: 

(https://www.meteociel.fr/temps-reel/obs_villes.php?code2=7480) for each measurement day 

(Table 2.1). In addition, all sampling measurement days were scheduled on weekdays. 

A near-road field measurement was conducted in the Bron-Lyon vicinity (France's Rhone-

Alps Region) on warm days in June and July 2019. The sampling period was mainly 

scheduled between 8: 15 𝑎𝑚 and  5: 00 𝑝𝑚. Time change was allowed to account for adverse 

weather conditions, namely extreme temperature or rain events, in order to maintain 

equipment safety. 

The 𝐹𝑀𝑃𝑆  is indeed sensitive to high temperature and may yield false measurements, which 

might even lead to an unintentional stop. The measurements were performed at two-heights: 

𝑕1 =  2.03 𝑚 (in the horizontal position) and 𝑕2 =  2.82 𝑚 (in the vertical position) above 

ground level in separate measurement days. 

 

 

 

 

 

https://www.meteociel.fr/temps-reel/obs_villes.php?code2=7480
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Table 2.  1: Data on climatic conditions during sampling days 

 

 

 

Day 

 

 

 

Starting 

time 

 

 

Ending 

time 

 

Wind 

direction 

 

Mean 

tempera

ture 

(°𝑪) 

Min 

wind 

speed 

(𝒎/𝒔) 

Max 

wind 

speed 

(𝒎/𝒔) 

Mean 

relative 

humidity 

(%) 

 

Distance 

(𝒎) 

D1 3:08 pm 4:00 pm North 26.8 1.1 4.4 41 6.6 

D2 7:51 pm 5:00 pm 

East, 

southeast, 

south 

19.3 6.3 11 32 6.6 

D3 8:02 am 12:00 pm 
Southeast, 

south 
21.05 7.2 15.2 40.2 6.6 

 

D4 
8:33 am 1:00 pm 

West, 

northwest, 

north, 

northeast 

13.52 1.4 3.9 85.83 6.6 

D5 8:22 am 3:40 pm 
South, 

southwest 
16 3.1 7.1 57.4 6.6 

D6 8:20 am 4:50 pm South 20.85 1.7 8.6 42.9 6.6 

D7 8:30 am 12:50 pm 
North, 

northwest 
19.48 1.7 7 39 30 

D8 8:30 am 6:05 pm 
East, north, 

northwest 
29.65 0.5 9 36 330 

 

Throughout the measurement period, the number of vehicles passing per minute or traffic 

volume was also considered (Table 2.2). 

Table 2.  2: Traffic volume data 

Time of day 

15-min 

volume 

(veh/h) 

30-min 

volume 

(veh/h) 

45-min 

volume 

(veh/h) 

60-min 

volume 

(veh/h) 

Total volume 

(veh/h) 

8:00 - 9:00 am 258 113 73 33 477 

9:00 - 10:00 

am 
94 92 109 81 376 
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Vehicles were continuously monitored manually at a 15 𝑚𝑖𝑛 frequency only during the 

measurement period of just one day (𝐷2) and for one lane of traffic, flowing towards the 

business activity zone, due to the unavailability of a traffic counting camera (Fig. 2.2). As 

such, one measurement day has been selected with normal traffic conditions. Indeed, 

Mondays and Fridays were avoided due to their unique traffic conditions (heavy outbound 

and inbound employee traffic). Heavy-duty vehicles (𝐻𝐷𝑉𝑠), light-duty vehicles (𝐿𝐷𝑉𝑠) and 

motorcycles were not counted separately since the traffic was considered to be homogenous. 

According to the official website of France's Ministry for the Ecological and Inclusive 

Transition (http://www.dir.centre-est.developpement-durable.gouv.fr/donnees-de-trafic-

r87.html), the average daily traffic volume circulating in the Bron-Lyon area amounted to 13, 

4810 vehicles per day, with 5 % composed of 𝐻𝐷𝑉𝑠. The average traffic volumes for the lane 

directed into the activity area (i.e. lane 1) and into the city center (lane 2) were: 5,499 𝑣𝑒𝑕/

 𝑑𝑎𝑦 and 4,949 𝑣𝑒𝑕/ 𝑑𝑎𝑦, respectively. Furthermore, the maximum hourly traffic flows for 

lane 1 and lane 2 were: 559 𝑣𝑒𝑕/ 𝑕  and  468 𝑣𝑒𝑕/ 𝑕. 

Particle measurements were conducted in close proximity to the avenue François Mitterrand 

in Bron-Lyon. This urban area was selected due to the high rates of pedestrians and cyclists, 

as well as large road traffic flows, given its role connecting the city center with the business 

activity area. In addition, pedestrians and cyclists are the category of the most users 

vulnerable to be affected by particle exposure. The measurement vehicle was first parked near 

the site of road traffic, and its distance to the road traffic was set at three different 

positions: 𝑑1 =  6.60 𝑚, 𝑑2 =  30 𝑚, and 𝑑3 =  330 𝑚. It was then parked on the eastern 

side facing the direction into the activity zone. The vehicle was equipped with a Fast Mobility 

Particle Sizer TM (𝐹𝑀𝑃𝑆TM
) Spectrometer and accompanying laptop. Also, three pipe lengths 

connected the 𝐹𝑀𝑃𝑆 to the vehicle's outdoor environment, as shown in Figure 2. 2. The effect 

10:00 - 11:00 

am 
85 70 90 73 318 

11:00 am - 

12:00 pm 
84 71 92 74 321 

12:00 - 1:00 

pm 
80 84 90 91 345 

1:00 - 2:00 pm 90 85 90 105 370 

2:00 - 3:00 pm 120 90 92 74 376 

http://www.dir.centre-est.developpement-durable.gouv.fr/donnees-de-trafic-r87.html
http://www.dir.centre-est.developpement-durable.gouv.fr/donnees-de-trafic-r87.html
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of several parameters, namely the distance from the traffic, the height above ground, the 

traffic volume, the wind speed and wind direction, was also investigated during these 

measurements. The pipe outlet was exited outside the measurement vehicle at a height of 

𝑕1 =  2.03 𝑚 (horizontal position) above ground and directed towards the road traffic. 

Simultaneously, continuous real-time data were recorded by the 𝐹𝑀𝑃𝑆 software. As a next 

step, measurements were recorded under practically the same conditions as the first test 

(horizontal position), except that the pipe was changed to the vertical position at a height of 

𝑕2 =  2.82 𝑚. Figure 2. 2 shows the equipment connection both inside and outside the 

measurement vehicle with the two different pipe positions and heights: 𝑕1 =  2.03 𝑚 

(horizontal position) and 𝑕2 =  2.82 𝑚 (vertical position). The tube diameter of the first and 

second positions was identical, (i.e.1 𝑐𝑚), while the tube lengths for the horizontal and 

vertical positions were: 1.56 𝑚 and 2.27 𝑚, respectively. 

 

Figure 2.  2: Equipment assembly at two-different heights 

2. 3. Results and Discussion 

2.3.1. Effects of wind speed and direction on 𝑷𝑵𝑪𝒔 and 𝑷𝑵𝑫𝒔 

This section is aimed at measuring the total particle number concentrations (𝑃𝑁𝐶𝑠). It is 

obvious that the dispersion of pollutants in an urban area is highly dependent on wind speed 

and direction. As such and in order to better evaluate the effects of wind speed and direction 

in an urban area, we have considered road traffic measurements in Bron-Lyon to represent a 

line pollution source. The measurements were recorded at two-heights: 𝑕1 =  2.03 𝑚, and 

𝑕2 =  2.82 𝑚 above the road pavement. The obtained experimental results indicate that the 
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average 𝑃𝑁𝐶 ranges between 1.04. 104
 cm

-3
 and 2.70 . 104𝑐𝑚-3

 on measurement days (i.e.𝐷1-

𝐷6), with the same fixed distance separating road traffic and the measurement vehicle, as 

noted in several published studies (see He and Dhaniyala, 2012; Schneider et al., 2015). 

Figure 2.3 reveals a change in the mean particle number concentration across the various 

measurement days due to changing distance between source and sampling site.  

 

Figure 2.  3:   Particle number distributions for all sampling days, D1-D8 
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Indeed, the distance was raised about five times and fifty times during 𝐷7 and 𝐷8 

successively as compare to the first 6 days. By comparing days at the same distance (i.e.𝐷1-

𝐷3 − 𝐷4 − 𝐷5 − 𝐷6) with those at different distances from road traffic (𝐷7 and 𝐷8), a 

remarkable change in both size particle distribution and number appears. The nanoparticle 

size distribution decreases when the distance between source and sampling site increases, as 

validated in a peer-reviewed study developed by Rönkkö and Timonen (2019). The fourth 

measurement day, 𝐷4, was characterized by the highest concentration rate due to a wind 

direction blowing into the sampling site. In contrast, 𝐷3 gave rise to the lowest particle 

concentration rates as a result of the high wind speed, reaching 15.2 𝑚/𝑠 in a direction away 

from the sampling site (Table 2. 3). 

At a distance from the source above 300 𝑚 (𝐷8), 𝑃𝑁𝐷𝑠 ( >60 𝑛𝑚) tend to zero due to the 

high ambient temperature of  30°𝐶, as indicated in Table 2.1. In this context, Virtanen et al. 

(2006) reported higher 𝑃𝑁𝐶𝑠 at a lower ambient temperature. 𝐷2 was found to contain the 

highest nucleation 𝑃𝑁𝐶𝑠 compared to the five other days at the same distance (𝐷1 − 𝐷3 −

𝐷4 − 𝐷5 − 𝐷6), due to the change in tube position (vertical position at 2.82 𝑚) and the low 

relative humidity, promoting a high rate of road dust resuspension. 

Table 2.  3: Spatial mean 𝑷𝑵𝑪𝒔, standard deviation and mean concentrations for the 

nucleation, Aitken and accumulation modes (expressed in 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔/𝒄𝒎3
) 

Measurement 

day 
PNC S.D Nucleation Aitken Accumulation Pipe Position 

D1 2.09×10
4
 1.55 ×10

3
 7.69×10

3
 1.07×10

4
 2.48×10

3
 Horizontal 

D2 2.04×10
4
 1.83×10

3
 1.40×10

4
 5.33×10

3
 1.06×10

3
 Vertical 

D3 1.04×10
4
 7.20×10

2
 4.97×10

3
 4.96×10

3
 5.06×10

2
 Horizontal 

D4 2.70×10
4
 1.99×10

3
 1.05×10

4
 1.45×10

4
 1.63×10

3
 Horizontal 

D5 2.01×10
4
 3.5×10

3
 1.29×10

4
 6.59×10

3
 5.67×10

2
 Horizontal 

D6 1.60×10
4
 2.9×10

3
 8.02×10

3
 6.14×10

3
 1.83×10

3
 Horizontal 

D7 1.16×10
4
 3.3×10

3
 3.47×10

3
 6.89×10

3
 1.25×10

3
 Horizontal 
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D8 1.38×10
3
 2.28×10

2
 1.06×10

3
 296.8 19.65 Horizontal 

 

Figure 2.4 compares the effect of meteorological parameters (wind speed, temperature) on 

𝑃𝑁𝐶𝑠 at different measurement days. Results reveal that temperature between  16 − 25°𝐶 

has no significant effect on 𝑃𝑁𝐶𝑠 as found by Casati et al. (2007). 

In contrast, wind speed has a significant effect on 𝑃𝑁𝐶𝑠. Indeed, if the direction of the wind 

directed towards the sampling station, it was shown high 𝑃𝑁𝐶𝑠 with high wind speed and 

vice versa.  

To analyze nanoparticles behavior, the channel size was divided into four ranges: the first 

between 5 and 30 𝑛𝑚 (𝑁5– 30) for the nucleation mode; the second between 30 and 

100 𝑛𝑚  (𝑁30– 100) for the Aitken mode; the third between 100 and 300 𝑛𝑚 (𝑁100– 300) 

for the accumulation mode; and the last between 300 and 560 𝑛𝑚 (𝑁300– 560) to denote the 

coarse mode, like in Al-Dabbous and Kumar (2014). 

For all considered study days, it was observed that 𝑃𝑁𝐷 is dominated by the nucleation and 

Aitken modes due to traffic exhaust emissions (Fig. 2.3). In order to evaluate 𝑃𝑁𝐷𝑠 close to 

the road traffic, all sampling days were included in the analysis. Irrespective of the included 

variables, 𝑃𝑁𝐷𝑠 showed a bimodal distribution with modes in the nucleation and Aitken 

range. The first nucleation mode centered at 10.75 𝑛𝑚 and the second was between 

22.07 𝑛𝑚 and 52.33 𝑛𝑚. A number of studies have validated the obtained results, e.g. Garg 

et al. (2000), who tested a brake dynamometer in different pads using the Electrical Low 

Pressure Impactor (𝐸𝐿𝑃𝐼).  

The authors demonstrated that the highest particle number appeared in diameters smaller than 

30 𝑛𝑚. In the same context, Mathissenet al. (2011) analyzed the potential generation of 

ultrafine particles under (𝑈𝐹𝑃𝑠) various actual driving conditions and conducted a road 

simulator study. They found a bimodal number size distribution with a first nucleation mode 

at 10 𝑛𝑚 and the second between 30 and 50 𝑛𝑚. Several studies have confirmed that the 

larger number mode was at 10 𝑛𝑚, which is consistent with fresh vehicle emissions (see Al-

Dabbous and Kumar, 2014; Beji et al., 2020; Choiand Paulson, 2016; Kittelsonet al., 2004; 

Kozawaet al., 2012; Zhu et al., 2002a, b). 

 

07/06/19 
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Figure 2.  4: climatologically parameters effect on PNCs during sampling days. 
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On the other hand, Schneider et al. (2015) pointed out that 𝑃𝑁𝐷𝑠 are centered at  14 𝑛𝑚, 

 30 𝑛𝑚 and 105 𝑛𝑚. Along the same lines, Kumar et al. (2008) evaluated the effect of 

wind speed on nanoparticle dispersion in several directions using a particle spectrometer 

(𝐷𝑀𝑆500). They found that 𝑃𝑁𝐷 peaks appeared at 15 𝑛𝑚 and 87 𝑛𝑚 in a street canyon. 

However, in this study, the bimodal distribution source was not well specified but could be 

explained by tyre wear, brake wear and exhaust emissions. Sampling measurements were in 

fact recorded close to a road segment characterized by a signalized crosswalk and bus station. 

Consequently, several acceleration and deceleration maneuvers were included, where vehicles 

accelerated after a red traffic light turned green. More specifically, Dahl et al. (2006) revealed 

that tyre wear was the source of the highest particle number concentrations at 15 𝑛𝑚 and 

50 𝑛𝑚. In addition, Mamakoset al. (2019) found that the highest particle number 

concentrations caused by brake wear were positioned at 10 𝑛𝑚. Furthermore, a study carried 

out by Rymaniaket al. (2017) demonstrated that the highest peak in exhaust particle number 

emissions appeared at 10.8 𝑛𝑚. In the current study, the average measurement time was 

variable from one day to another that may induce non-consistent average 𝑃𝑁𝐷 actually. 

A slight difference in 𝑃𝑁𝐷𝑠 from one study to another may be explained by the use of 

different measurement tools or a focus on different road types and/or different traffic volumes 

and climatic conditions (i.e. relative humidity, wind speed, wind direction, etc.). 

2. 3.2. Effect of height on 𝑷𝑵𝑪𝒔 and 𝑷𝑵𝑫𝒔 

In order to examine the effect of height on 𝑃𝑁𝐷𝑠, two measurement days (𝐷2 𝑎𝑛𝑑 𝐷3) were 

considered with two heights: 𝑕1 = 2.03 𝑚 (horizontal position), and 𝑕2 =  2.82 𝑚 (vertical 

position) above the road pavement. Figure 2.5 shows the 𝑃𝑁𝐷𝑠 in both horizontal and vertical 

pipe positions with various wind directions and speeds. The urban study area is characterized 

by a high nanoparticle number with channel size diameters in nucleation mode primarily in 

10.75 𝑛𝑚, reaching up to 5.61. 103 #/𝑐𝑚³ at height 𝑕1, and 3.23. 104 #/𝑐𝑚3
 at height 𝑕2 

(Fig. 2.5). This finding is due to the role of thermal plume rise and the high number of buses, 

whereby the tailpipe height of an 𝐻𝐷𝑉 is practically at 2.70 𝑚 above ground (He and 

Dhaniyala, 2012). Particle number concentrations (𝑃𝑁𝐶𝑠) increase when the height increase 

is less than 5 𝑚 above ground. Along these lines, a number of studies have affirmed that 

PNCs increase significantly with height under all wind speed conditions at heights closer to 

the pavement (below 3.4 𝑚) (see, for instance, He and Dhaniyala, 2012; Imhof et al., 2005; 
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Zhu and Hinds, 2005). Overall, these findings contend that particles with a diameter smaller 

than 30 𝑛𝑚 are strongly influenced by height, as validated by Quang et al. (2012). 

 

 

 

Figure 2.  5: Nanoparticle number distributions, PNDs, at various heights 

The resultant increase with a diameter of less than 30 𝑛𝑚 (nucleation mode) while decreasing 

above 30 𝑛𝑚 would in fact suggest that this mode is correlated with the new particle 

formation event tied to the amount of global radiation. It can be concluded that a significant 

correlation exists between 𝑃𝑁𝐶𝑠 and channel size 𝐷p at 𝑕1 =  2.03 𝑚 on rush hour period. 

This relationship can be explained by the negative linear equation (𝑦1 =  −207.7 𝑥 +

 6, 618) with a reliability coefficient of 𝑅² = 50.7, where 𝑃𝑁𝐶𝑠 increase inversely 

proportional to particle diameter (Fig. 2.6a). 

The strong correlation between 𝑃𝑁𝐶𝑠 and channel size 𝐷p at 𝑕2 = 2.82 𝑚 can be explained 

by the negative linear equation (𝑦2 = −327.9 𝑥 +  9,332) with a reliability coefficient of 

62.4 % (Fig. 2.6b). This latter finding explains the high particle number in both nucleation 

and Aitken modes and the low particle number in the accumulation and coarse modes. 

Moreover, it is important to note that a high 𝑃𝑁𝐶 has appeared in the nucleation mode, as 

validated by several studies (see Kukutschováet al., 2011; Wahlströmet al., 2010b).  
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Figure 2.  6:  Correlation between PNC and channel size. 

 

2.3.3. Effect of distance and traffic conditions on 𝑷𝑵𝑪𝒔 

This section seeks to investigate the effect of distance from the source and traffic conditions 

on 𝑃𝑁𝐶𝑠. To this end, three measurement days were considered with different distances. 

Measurement times started at around 8 𝑎𝑚 and lasted until 1 𝑝𝑚, with a 1 𝑚𝑖𝑛 time step. 

Results reveal that tremendous peaks appeared in the morning, especially during morning 

rush hour (mostly from 8: 00 to 9: 00) (Fig. 2.7). Figure 2.7a displays three peaks during the 

period from 8 to 9: 30 𝑎𝑚 due to the high traffic volume, with a distance 𝑑1 = 6.60 𝑚 

between the road traffic and the sampling site. However, at a distance 𝑑2 =  30 𝑚 (as 

depicted in Fig. 2.7b), a succession of peaks occurs over the 8 −  9 𝑎𝑚  period. Beyond this 

period, 𝑃𝑁𝐶 peaks decline. It is worth noting that on the second measurement day, the 

𝑃𝑁𝐶𝑠  were lower than those measured on 𝐷1 due to the greater distance between source 

(road traffic) and sampling site. 

(a) Correlation between 𝑃𝑁𝐶 and channel size at 

height 𝑕1 =  2.03 𝑚 

 

 (b) Correlation between 𝑃𝑁𝐶 and channel size at 

height 𝑕2 =  2.82 𝑚 
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Figure 2.  7: PNCs at various distances from the road traffic 

 

As illustrated in Figure 2.7c, the third measurement day with a distance 𝑑3 =  330 𝑚 from 

the road traffic was characterized by low 𝑃𝑁𝐶𝑠 compared to the other two days and by a 

curve with steady peaks, since the sampling measurement position was located far from the 

road. The experimental results demonstrate that the relationship between 𝑃𝑁𝐶𝑠 and distance 

from the source could be explained by a negative linear polynomial model with 95 % 

confidence bounds and high reliability coefficient of 96.69 % (Eq.2.1). More specifically, 

𝑃𝑁𝐶𝑠 are found to decrease with increasing distance from the source (road traffic) and vice 

versa, which is in close agreement with previously published results (see Choi and Paulson, 

2016; Goel and Kumar, 2016; Kittelsonet al., 2004; Zhu et al., 2002). As shown in Figure 2.8, 

the relationship between 𝑃𝑁𝐶𝑠 and road traffic - sampling site distance is derived as follows: 

𝑓 𝑥 = 𝑝1   𝑥 + 𝑝2  (Eq.2.1), where: 

𝑝1 =  −15.83 (−53.06, 21.4), 𝑝2 = 5,733 (−1,397, 1.286 𝑒 + 04) 
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Figure 2.8 indicates that the 𝑃𝑁𝐶 decreases equal roughly six-times its maximum in the case 

of distance 𝑑3 = 330 𝑚 from the road compared to recordings with distance 𝑑1 = 6.60 𝑚 

from the same emission source.  

 

Figure 2.  8: PNC vs. distance from the source 

Hitchins et al. (2000) reported that the concentrations of fine and ultrafine particles decreased 

by about half from their maximum at distances of 100 and 150 𝑚 from the source. 

It can generally be concluded from these recorded results that both traffic and distance greatly 

influence particle number concentrations. 

 

2. 4. Concluding remarks 

The current chapter has provided the results of an experimental study conducted in the urban 

sector of Bron (in the Lyon Metropolitan Area) at two-heights (𝑕1 =  2.03 𝑚 and 𝑕2 =

 2.82 𝑚) above the road level and at three distances (𝑑1 =  6.60 𝑚, 𝑑2 = 30 𝑚 and 𝑑3 =

 330 𝑚) from the emission source. Real-time continuous measurements of both particle 

number concentrations and distributions were recorded using the Fast Mobility Particle Sizer 

TM 
(𝐹𝑀𝑃𝑆TM

) Spectrometer (Model 3091) with size-resolved particles in the range of 

5.6 − 560 𝑛𝑚. In this study, particles were classified into four distinct modes, namely 

nucleation (6.04 − 30 𝑛𝑚), Aitken (30 − 100 𝑛𝑚), accumulation (100 − 300 𝑛𝑚), and 

coarse (300 − 560 𝑛𝑚). The impact of wind at various speed and direction on particle 

number concentrations (𝑃𝑁𝐶s) was measured and analyzed. In addition, the effects of 

distance from the source and traffic conditions on nanoparticles were investigated 

experimentally and thoroughly discussed. It was demonstrated that 𝑃𝑁𝐶 values are inversely 
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proportional to the distance between road traffic and sampling site. Moreover, 𝑃𝑁𝐶𝑠 are very 

high in the vicinity of the traffic zone, predominantly during rush hour since the sampling site 

connects the city center with a business activity area. In this circumstance, practically all 

workers commute at the same time, which increases traffic density. Furthermore, 

𝑃𝑁𝐶 increases significantly with an increase in height of less than 2.82 𝑚 above the ground. 

With heights 2.03 𝑚 and 2.82 𝑚 above the ground, the urban study area is characterized by 

high nanoparticle number with channel size diameters in nucleation mode (10.75 𝑛𝑚). The 

average 𝑃𝑁𝐷 values revealed typical bimodal distributions for each wind speed and direction, 

with a strong nucleation mode peak at ~ 10.75𝑛𝑚 and an Aitken mode peak between 22.07 

and 52.33 𝑛𝑚. The magnitude of 𝑃𝑁𝐶𝑠 is changed according to wind speed and direction, 

accounting for a much higher variation in the nucleation and Aitken modes than in the 

accumulation mode. These latter results explained by a greater variation being attributed to 

the larger effect of increased dilution on particles in the nucleation and Aitken modes than in 

accumulation.  
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Chapter 3:  Continuous real-world measurements of exhaust and 

non-exhaust vehicle emissions over different traffic areas 

3. 1. Introduction 

Section1 : vehicle exhaust PNCs   

Diesel-powered vehicles constitute the major source of road vehicle pollution in the European 

Union (𝐸𝑈). Urban areas generate considerable human activity and large proportion of 

pollution that induces significant adverse environmental impacts, not to mention health effects 

by virtue of penetrating into the deep lung (Stone et al., 2017). Furthermore, they raised risk 

of lung cancer mortality through the mechanisms of inflammation and oxidative stress (Sun et 

al., 2010; Valavanidis et al., 2008). In fact, small-diameter particles account for a higher 

deposition fraction in the human respiratory system, in addition to exhibiting a larger specific 

surface area (Giechaskiel et al., 2015). Epidemiological analyses have consistently confirmed 

a significant relationship between 𝑃𝑀, pollution and the number of cardiovascular and 

respiratory tract disease victims (e.g. Kim et al., 2012; Skrzypek et al., 2013). Furthermore, 

(Oviedo and Sabogal, 2020) revealed that the transport is strongly associated with the life of 

citizens and human health. Road traffic 𝑃𝑀 emissions can be subdivided into exhaust and 

non-exhaust emission components (Charron et al., 2019), with the exhaust 𝑃𝑀 emissions 

being produced from tailpipes as a consequence of incomplete fuel combustion inside the 

engine combustion chamber. 𝑃𝑀 adversely affects human health in two ways, namely a 

diminished capacity of the respiratory tract to remove such deposits and a 𝑃𝑀 deposition 

mechanism acting in the respiratory tract, both of which are highly correlated with 𝑃𝑀 size 

(Mainka and Zajusz-Zubek, 2019). In general, particulates suspended in air ranged between 

0.005 and 100 𝑚. In practical terms, suspended particles are classified as either ultrafine / 

alveolic fraction (<  0.1 𝑚) or fine / thoracic fraction (<  2.5 𝑚). Both classification types 

tend to deposit in the area of the bronchi and trachea, as well as in pulmonary alveoli; in 

contrast, the coarse or inhalable fraction (2.5 − 10 𝜇𝑚) tends to deposit in the area of the 

throat, nose and larynx of the respiratory tract (Bernstein et al., 2008; Lippman et al., 1980). 

The smaller PM (<  1 𝑚) exerts a larger negative effect on human health, targeting asthma 

and the respiratory system (Mei et al., 2018). Despite these negative externalities, until now 

𝑃𝑀1 has not been frequently quantified since it lies outside the focus of air quality standards. 

In an absolute majority of countries, data relating to 𝑃𝑀1 concentration levels and its various 
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features are restricted (Agudelo-Castañeda and Teixeira, 2014; Titos et al., 2014; Zajusz-

Zubek et al., 2017). 

Road transport is the main contributor of fine particulate mass (𝑃𝑀2.5) emissions in Europe, 

which contribute by  11 % of the total amount (EEA, 2018). The urban traffic proportion of 

total particulate matter levels has been determined to lie between 5% and 80% (Pant and 

Harrison, 2013), while it can reach 90% on busy roads (Kumar et al., 2014). Approximately 

20% of the European Union‘s (𝐸𝑈) 2010 urban population lived in areas characterized by a 

daily air quality 𝑃𝑀 standard whose diameter was smaller than 10 𝜇𝑚 (50 𝜇𝑔/ 𝑚3
) 

(Belkacem et al., 2020; EEA, 2014). Furthermore, rural areas cover about half of Europe and 

account for 20 % of its population. 

As regards air quality management, the responsibility for improving air lies with the 

authorities managing the urban road environment. The basic approval procedure for road 

vehicles had been carried out on a roller dynamometer test bench within a clearly prescribed 

New European Driving Cycle (𝑁𝐸𝐷𝐶). This cycle has since been replaced by the Worldwide 

Harmonized Light Vehicles Test Procedure (𝑊𝐿𝑇𝑃) (DELPHI, 2017). In order to obtain 

information on particle emissions into the atmosphere under real-world conditions, laboratory 

measurements must be validated by field measurements, which happen to be more consistent 

and reliable. Stationary measurements are well adapted to provide relevant data for specific 

measurement sites (urban, rural, suburban, motorway, etc.) yet are less well adapted to 

continuously study the contribution of individual vehicles under actual driving conditions. 

Real-world road measurements are thus critical to improving the scientific knowledge of road 

traffic particle emissions. Several commercial tools are available for real-world particle 

measurements; one such real-time aerosol monitor is the Optical Particle Counter 

(𝑂𝑃𝐶𝐺𝑅𝐼𝑀𝑀TM
) analyzer, series 1.108 Portable Aerosol Spectrometer. This 𝑂𝑃𝐶𝐺𝑅𝐼𝑀𝑀TM

, 

ref. 𝐸𝐷𝑀 1.108, has the capability to simultaneously measure particulates ranging in 

aerodynamic diameter size from 0.35 𝑚 to 22.5 𝑚 across 15 channels (Kundu and Pal, 

2015; Peters et al., 2006). Furthermore, several studies have demonstrated that the 𝐺𝑅𝐼𝑀𝑀 

monitor is an accurate tool compared with the filter dynamic measurement system (𝐹𝐷𝑀𝑆) 

(e.g.Grimm and Eatough, 2009) and other particulate matter instruments (Cheng 2008; 

Omidvarborna et al., 2020; Qiu et al., 2019). Very few studies have compared continuous 

real-world diesel vehicle exhaust 𝑃𝑀𝐶 and 𝑃𝑁𝐶 measurements over different traffic areas, 

including urban, rural, motorway and national roads. 
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Section 2: non-exhaust emissions  

Road traffic is the main source of ambient air quality and particulate matter in the atmosphere 

degradation. The total non-exhaust 𝑃𝑀 (𝑃𝑀2.5 and 𝑃𝑀10) induced by light duty vehicles 

(LDVs) worldwide will increase by 53.5 % along with transport demand in 2030 as 

compared to 2017 (𝑂𝐸𝐶𝐷 2020). Road, tire and brake wear emissions have developed from 

39 % of 𝑈𝐾𝑃𝑀10 road traffic emissions in 2000 to 73 % in 2018 and from 26 % in 2000 to 

67 % in 2018 for 𝑃𝑀2.5 (𝐶𝑂𝑀𝐸𝐴𝑃 2020). Resuspension and wear part can be considered as 

non-exhaust emissions. Atmospheric Particulate Matter 𝑃𝑀2.5 or fine 𝑃𝑀 are considered to 

cause 412,000 premature deaths per year including 33,200 in France (European Environment 

Agency 2019). The particles induced from road dust, tire, road surface and brake wear are 

emitted with a diameter <10 𝑚,  inducing a significant health risk for the human body. 

Despite the important burden of non-exhaust particle (NEP) emissions on public health and 

environment, few regulations target them explicitly (OECD, 2020). This is due to the lack of 

uniform technique/protocol of measurements. According to the 𝑈𝐾 National Atmospheric 

Emissions Inventory (𝑁𝐴𝐸𝐼), the 𝑁𝐸𝑃𝑠 are strongly higher than exhaust emissions for both 

𝑃𝑀2.5 and 𝑃𝑀10. The impact on 𝑁𝐸𝑃 emissions remains unclear, as the evolution of the 

advanced propagation of regenerative braking systems (e.g., the energy recovery mechanism 

employed in electric vehicles that makes resistance braking through the vehicle's engine 

acting as a generator to transform kinetic energy into electrical energy) will probably mitigate 

brake wear emissions.  

 Coarse and fine particles from non-exhaust sources have been related with short-term 

morbidity and mortality (Meister et al. 2012; Ostro et al. 2011). 𝑃𝑀10 can easily penetrate 

into bloodstream, lungs and hearts (Environmental Protection Agency, 2017). However, in 

order to contribute to a productive and healthy indoor air environment, vehicle ventilation 

systems should be equipped with filters that are able to remove 𝑃𝑀1 particles, since the 

smallest particles are the most harmful to human health like; pulmonary inflammation and 

asthma exacerbation (Shao et al. 2017; Niu et al. 2020). It has been demonstrated that 

regularly exposure to nanoparticles may harmfully affect human health (Feng et al. 2020). A 

comparative study by Zwozdziak et al. 2016 demonstrated that PM1 has greater effect on lung 

function parameters as compare to 𝑃𝑀2.5 for school children aged between 13 and 14 years. 

In order to realize a sustainable environment and mobility, it is important to quantify not only 

particle mass concentration but also particle number concentration. Given the pronounced 
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negative impacts of particulate matter on human public health, it is incumbent on authorities 

on to mitigate these emissions. Disc brakes are the most frequent type of braking system for 

the recent technological vehicle generation, including an abatable brake pad, which works on 

the brake disc (Grigoratos and Martini 2015).  Particles are engendered from the frictional 

wear during the braking action, but the fraction of this PM (less than 10 𝜇𝑚) is not yet fully 

mastered (Grigoratos and Martini 2014). In fact, the composition of brake friction material is 

frequently proprietary/confidential and can be influenced on manufacturer and the tire of 

brake system (e.g. ceramic, non-asbestos organic, semi-metallic, etc.) (Thiyagarajan et al. 

2015; Grigoratos and Martini (2014, 2015)). There is diversity of commercial brake friction 

materials which exceeds 200 ingredients. Tire and road wear particle emissions are induced 

when tires associate with the road surface through abrasion and friction (Grigoratos et al. 

2018; Kesarkar et al. 2020). These particles are internally comprised and mixed both the 

embedded road materials, depending on the type of road surface (e.g. concrete/asphalt) and 

the tread rubber (Grigoratos et al. 2014). Tire compositions are multiple and their proprietary 

data make it complicated to estimate the tire tread composition. They generally contained a 

mixture of synthetic and natural rubbers (40 − 60 %), vulcanization agents (2 − 5 %), fillers 

(20 − 35 %), textile and metal reinforcements (5 − 10 %), process oils (12 − 15 %) and 

additives (5 − 10 %) (Panko et al. 2019; Baensch-Baltruschat et al., 2020). Road vehicle dust 

resuspension emissions are engendered by different mechanisms: turbulent micro-eddies, 

subsequent and attachment of material from the tire and the road surface due to high-speed 

airflows, and movement of the vehicle as air is expelled from the tire (AQEG 2019; Harrison 

2020). Various sources participate to the composition of road dust resuspension, which makes 

quantifying and separating the different emission sources quite difficult (Harrison 2020; 

Furger et al. 2020).  Nevertheless, particle size distribution of resuspension is over 10 𝑚, of 

which crustal and soil material reveale the dominant components in road dust (Amato et al. 

2014; Huang et al. 2020). 

Even though highly developed, vehicle technologies have been made for mitigating 𝑃𝑀 

emissions from motor exhausts, no actions have been taken to reduce the non-exhaust 

proportion of emissions, inducing in turn a substantial increase of total emissions. The relative 

contribution of road and tire wear particles is anticipated to gradually multiply at short-

medium-long term (Mathissen et al. 2011). Tire wear particles can also be constituted as 

evaporative emissions -resulting to the heating of the tire followed by coagulation and 

condensation (Jekel 2019). The emissions of tire road wear particles (𝑇𝑅𝑊𝑃𝑠) constitute a 
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major non-exhaust particles source (Grigoratos and Martini 2015; Kwak et al. 2013), 

including road surface wear and tires as well as resuspension of road dust. Practically, in road 

transport, the most primary fine particles are produced from the exhaust, whereas coarse 

particles are mainly induced from non-exhaust sources (Grigoratos and Martini 2014). Some 

studies have shown the peak of the 𝑃𝑁 distributions in the ultrafine mode, while they are not 

pronounced under normal driving conditions (Grigoratos and Martini 2014). The change in 

particle emissions is due to many factors, such as traffic conditions, meteorological, ambient 

particulate pollution, variation in tire composition and texture, driving style, and road surface 

features (Dahlet al. 2006; Gustafsson et al. 2008; Grigoratos et al. 2018; Park et al. 2018). 

In order to take complete and real information about particle measurements, laboratory 

control methods become insufficient measurement tools. For this reason, laboratory 

measurements have been enhanced through on-road-real driving emissions (𝑅𝐷𝐸) (Belkacem 

et al. 2021). In addition, laboratory studies are not suitable to represent the entire vehicle fleet, 

as tires and brakes that can change significantly between the performance and manufacturers 

specifications. Meanwhile there may be dissimilarities between real-world and simulations 

conditions, including emissions driving styles.  

A number of studies have been done towards characterizing the non-exhaust particles (𝑁𝐸𝑃) 

on road (Kwak et al. 2013; Harrison et al., 2012) or in laboratory measurements (Gustafsson 

et al. 2008; Grigoratos et al. 2018; Foitzik et al. 2018). In addition, some studies have focused 

on evaluating the effect of acceleration and deceleration maneuvers, without taking into 

account the real traffic conditions (real driving conditions) (e.g.Kwak et al. 2014) or with a 

predefined test cycle (e.g. Pelkmans and Debal 2006). The latter mentioned conditions may 

not reflect real particle number concentrations. Fundamentally, this study tends to measure 

real 𝑁𝐸𝑃𝑠 in different road segment areas of Lyon - France; urban, rural, and motorway. In 

fact, implementing similar measurements and sampling methodologies are needed to provide 

comparative results. The parameters that were changed from one to another sampling day 

were; road type, vehicle speed and acceleration/deceleration maneuvers, while keeping the 

same driver during all measurement days. Thus, instantaneous particle emissions are applied 

in individual level analysis because they provide accurate spatial and temporal analyses. 

Finally, this research measured the effect of real vehicle speed and acceleration/ deceleration 

maneuvers on 𝑁𝐸𝑃 concentrations in urban, rural and motorway areas.  
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Thus, the aim of this chapter to estimate, investigate and compare real-world, micro-scale 

continuous exhaust and non-exhaust particle mass concentrations and number by optical size, 

from roughly 0.35 to 22.5 𝑚, under actual measurement conditions for light-duty vehicles 

(LDVs) in order to improve road mobility within the framework of environmental 

sustainability. Measurements were conducted in Lyon (France) using 𝐺𝑅𝐼𝑀𝑀 analyzer series 

1.108. The instantaneous speed profiles and locations were simultaneously recorded by the 

global positioning system 747 Pro (𝐺𝑃𝑆). To the best of the authors' knowledge, the current 

research is the first comprehensive initiative evaluating both fine and coarse particles on 

major roads in Lyon (urban, rural, motorway, 𝑅𝑁6) under actual traffic conditions. The 

critical situation here has been correlated with medium-to-long term effects on the population 

as well as with air quality. 

Section 1: Vehicle Exhaust emissions 

3. 1. 1. Materials and Methods 

3. 1.1.1. Study areas 

Measurements took place during July 2019 in the vicinity of Lyon (France). Lyon is France's 

second largest conurbation and third largest city; it is located in central eastern France 

between Paris and Marseille, in the Auvergne-Rhône-Alpes Region. The National Institute of 

Statistics and Economic Studies (𝐼𝑁𝑆𝐸𝐸) has estimated the population at 515,695 as of 

2016, with location coordinates of 45°45′35″ North, 4°50′32″ East. The total mileage 

traveled for all sampling day measurements was approximately 203 𝑘𝑚, including both 

forward and backward directions. This large population number underscores the importance 

of this research through exposing the human body to different types of road traffic air 

pollution (specifically for urban, suburban and rural roads). Diesel vehicle exhaust 

particulates were collected during either the morning or evening period, depending on climate 

conditions (Table 3.1). 
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Table 3.  1:  Related data for all sampling measurement days 

 

The registration year of the light utility vehicle used for sampling days was 2001, which 

corresponds to the 𝐸𝑢𝑟𝑜 3 class, since in Europe vehicle tailpipe emissions are regulated 

according to Euro class. Emission thresholds are identified for compounds regulated in the 

year that a vehicle category is introduced on European roads: 𝑝𝑟𝑒 − 1992 (𝐸𝑢𝑟𝑜 0), 1992 −

95 (𝐸𝑢𝑟𝑜 1), 1996 − 99 (𝐸𝑢𝑟𝑜 2), 2000 − 04 (𝐸𝑢𝑟𝑜 3), 2005 − 08 (𝐸𝑢𝑟𝑜 4), 2009/2011-

13 (𝐸𝑢𝑟𝑜 5𝑎/𝑏) and 2014 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝐸𝑢𝑟𝑜 6). Measurements have mainly been obtained in 

urban (Bron-Décines-Meyzieu), suburban-rural (Saint-Just Chaleyssin-Corbas), motorway 

(𝐴46) and national highway (𝑅𝑁6, along the ring road) (Fig. 3.1). 

The mileage traveled was not the same on all sampling days, depending on the road type 

(urban, suburban-rural, motorway, 𝑅𝑁6). Fig. 3.1a depicts the first day's itinerary of mobile 

sampling measurements on an urban road. The operating mode was adjusted according to the 

speed, idle acceleration and time via the global positioning system (𝐺𝑃𝑆) under real-world 

monitoring with a 1 − 𝑠 resolution. The itinerary extended from Bron (urban area) to Meyzieu 

(suburban) passing through Décines (semi-urban). 

 

Measurement 

day 
Direction Road type 

Distance 

(𝑘𝑚) 

Min. 

temp. 

(°𝐶) 

Max. 

temp 

(°𝐶) 

Mean 

temp. 

(°𝐶) 

Precipitation 

(𝑚𝑚) 

D1 

Forward 

Urban 

16 

20.5 32 26.25 No 

Backward 16 

D2 

Forward 
Suburban 

+Rural 

32.5 

19.1 31.7 25.4 No 

Backward 32.5 

 

D3 

 

 

Forward 

Motorway 

35 

16.9 27.6 22.25 No 

Backward 39.6 

D4 

Forward RN6 

National 

Highway 

16 

16.1 28.2 22.15 No 

Backward 16 
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Figure 3.  1: Road map of the various study areas 

Fig. 3.1b illustrates the suburban and rural road itinerary (Saint-Just, Corbas). Fig. 3. 1c 

represents the third day's mobile sampling itinerary along the 𝐴46 motorway. According to 

the official website of France's Ministry for the Ecological and Inclusive Transition 

(http://www.dir.centre-est.developpement-durable.gouv.fr/donnees197de-trafic-r87.html), the 

average traffic volume traveling on the 𝐴46 amounted to 85,760 vehicles per day, with 19 % 

composed of 𝐻𝐷𝑉𝑠. Fig. 3.1d indicates the fourth day's mobile sampling itinerary along 𝑅𝑁6 

(ring road section). In all sampled measurements, the current study has taken into account 

both forward and backward directions. The average traffic volume traveling on the RN6 

amounted to 36,369 vehicles per day, with 6 % composed of  𝐻𝐷𝑉𝑠. Table 3.1 lists detailed 

information on all the mobile measurements, including time, road type, mileage traveled and 

direction. Four days of measurements were processed in order to evaluate the exhaust 

particulate mass and particle number for the four tested road types, again in both directions. 

Trip duration varied according to road type. 

3.1. 1.2. Experimental set-up and data recording 

(c): D3 – Motorway     74.6 km 
(d): D4- RN6                  32km

http://www.dir.centre-est.developpement-durable.gouv.fr/donnees197de-trafic-r87.html
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Several studies were conducted to measure the particulate matter (𝑃𝑀) in close proximity to 

specific road segments (at the macroscopic scale), while not being focused on the microscopic 

𝑃𝑀 exhaust emissions (at the vehicle scale). Particulate matter concentrations 

(𝑃𝑀10, 𝑃𝑀2.5 and  𝑃𝑀1), particle number concentrations (𝑃𝑁𝐶) were estimated within the 

0.35 −  22.5 µ𝑚 diameter size range using the 𝐺𝑅𝐼𝑀𝑀 series 1.108 Aerosol Spectrometer. 

The mobile measurements were programmed to record at a time resolution of 6 seconds, 

which yielded sufficiently detailed data in particle concentrations of urban, rural, motorway 

and national road particles that were unclear in laboratory or fixed-site measurements (Fig. 

3.2). It was used also to estimate the exhaust 𝑃𝑀 concentrations (𝑃𝑀1, 𝑃𝑀2.5, 𝑃𝑀10) at a 

flow rate of 1.2 𝑙 𝑚𝑖𝑛-1
. This portable optical particle counter was selected due to its ease of 

operation, light weight and effectiveness for the time resolution of continuous particulate 

measurements. Within the aerosol classification, particle counts ranged between 1 and 

2,000,000𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠. 𝑙-1
, while the mass measurements could vary from 0.1 to 

100,000 µ𝑔. 𝑚-3
. The 𝐺𝑅𝐼𝑀𝑀 efficiency for radial symmetric sampling is influenced by 

wind speed. A study has compared the GRIMM 1.108 response with 6 other devices, namely: 

𝑇𝐸𝑂𝑀1400, spectrometer 𝑇𝑆𝐼 𝐴𝑃𝑆 3321, 𝐺𝑅𝐼𝑀𝑀 1.109, 𝐿𝐼𝐺𝐻𝑇𝐻𝑂𝑈𝑆𝐸 𝐻𝐻3016𝐼𝐴𝑄, 

𝐺𝐿𝐴 5000 𝑃𝑉𝐶, and 𝐺𝐿𝐴 5000 𝑃𝑉𝐶. Results showed very good conformity between 

𝐺𝑅𝐼𝑀𝑀 and the six tested devices (INRS, 2012). 
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Figure 3.  2: Field study set-up (Exhaust emissions) 

 

Diesel particle concentrations were measured with a 𝐺𝑅𝐼𝑀𝑀 series 1.108 Aerosol 

Spectrometer. This analyzer had been calibrated by its manufacturer using dolomite dust. 

Measurements were conducted on four different road segments in the vicinity of Lyon 

(France). Thirty minutes were required before starting the trip in order to load all necessary 

tools inside the light utility vehicle. Battery charging lasted between four and five hours. All 

team members exercised caution not to exceed five hours of charging, which would have 

caused the battery to discharge. Moreover, before initiating each sampling measurement, zero 

calibrations were regulated on both the 𝐺𝑅𝐼𝑀𝑀 1.108 aerosol spectrometers and 𝐺𝑃𝑆. Next, 

a blank test was run for a 10 − 𝑚𝑖𝑛 duration using a filter in order to eliminate any stale 

lingering particles in the 𝐺𝑅𝐼𝑀𝑀 pipe. In this manner, one team member ensured that the 
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standby button was activated before taking measurements. The 𝐺𝑃𝑆 time was synchronized 

with the 𝐺𝑅𝐼𝑀𝑀 time on a daily basis. The pipe connected to the 𝐺𝑅𝐼𝑀𝑀 device was placed 

in front of the tailpipe of the light utility vehicle of a 4 𝑐𝑚 distance and with a diameter of 1 

cm. Diesel exhaust particle measurements were recorded under real-world traffic conditions 

on various road segment types. Most studies measure particle exhaust in the laboratory with a 

standard driving cycle (e.g. 𝑁𝐸𝐷𝐶, 𝑊𝐿𝑇𝑃) (Andersson et al., 2007). In contrast, this driving 

cycle does not take into account the actual traffic, climate conditions, "blackheads" (e.g. 

unforeseen collision) or driver behavior. The time spent during this research to cover the 

various segments varied from 1 hour 2 𝑚𝑖𝑛 to 1 𝑕𝑜𝑢𝑟 24 𝑚𝑖𝑛 depending on the traffic 

conditions and road segment type. Before starting the sampling process, all team members 

installed the necessary tools inside the light utility vehicle, including the 𝐺𝑅𝐼𝑀𝑀 series 1.108 

Aerosol Spectrometer and the 𝐺𝑃𝑆. In addition, one staff member verified that all tools had 

been secured, so as to avoid their damage during vehicle operations. Different itineraries were 

followed by the driver as a function of the selected destination.  After finishing sampling 

measurements, a team member activated the 𝐺𝑅𝐼𝑀𝑀 standby button and then recorded the 

data on the laptop. Lastly, 30 minutes were needed to return the tools to the laboratory. 

3.1. 2. Results and discussion 

3.1.2.1. Particulate mass concentrations 

- Diurnal variations of PM10, PM2.5 and PM1concentrations 

Table 3.3 shows the correlation between 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 concentrations on various 

road segments. 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 rates exhibit high correlation between fine, 𝑃𝑀2.5, 

𝑃𝑀1 (𝑃𝑀2.5-1) and coarse particulates (𝑃𝑀10) across all road types. This high correlation 

between 𝑃𝑀2.5-10, 𝑃𝑀1-10 and 𝑃𝑀2.5-1 may be explained by the fact that emission sources were 

the same for all mobile sampling measurements (i.e. road traffic sources) (Janssen et al. 

2013). Fig. 3. 3 provides the diurnal variations of 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 concentrations for 

the summer season. 
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Table 3.  2:  Correlation between 𝑷𝑴𝟏𝟎, 𝑷𝑴𝟐. 𝟓 𝒂𝒏𝒅 𝑷𝑴𝟏 concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description Best-fit equation R
2
 Sampling measurement day 

 

 

 

 

𝑃𝑀2.5 vs. 𝑃𝑀10 

 

y1 = 0.784x1 - 3.446 

 

0.876 

 

D1 

 

y 2= 0.891x2 - 4.999 

 

0.934 

 

D2 

 

y3 = 0.845x3- 5.063 

 

0.968 

 

D3 

 

 

y4 = 0.780x4 - 2.443 

 

0.905 

 

D4 

 

 

 

𝑃𝑀1 vs. 𝑃𝑀10 

 

y1 = 0.618x1 - 8.576 

 

0.725 

 

D1 

 

y2 = 0.628x2 - 6.494 

 

0.761 

 

D2 

 

y3= 0.500x3 - 3.635 

 

0.939 

 

D3 

 

y4 = 0.462x4 - 1.716 

 

0.825 

 

D4 

 

 

 

 

𝑃𝑀2.5 vs. 𝑃𝑀1 

 

y1= 1.119x1 + 10.01 

 

0.941 

 

D1 

 

y2 = 1.207x 2+ 7.867 

 

0.888 

 

D2 

 

y3 = 1.651x3 + 1.651 

 

0.984 

 

D3 

 

y4 = 1.575x4 + 2.511 

 

0.957 

 

D4 
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The first peak in all curves could be explained by incomplete combustion with short distances 

traveled during the first 2 km of the trip (roughly the first 5 𝑚𝑖𝑛) and a cold engine (Chen et 

al., 2017; Zhu et al., 2016). 

The highest average 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 values appeared on the urban national highway 

𝑅𝑁6 (along its ring road section) with recordings of 43.96, 31.85 and 18.62 𝑔/𝑚3
, 

respectively. In fact, the 𝑅𝑁6 geometry features a curvature that requires more power from   

 

Figure 3.  3: Diurnal PM10, PM2.5 and PM1 variations across the tested road segment types 

 

the engine and higher speed in order to ensure equilibrium in the middle of the roadway. 

Moreover, it is characterized by high traffic density, especially by the heavy vehicle category. 

The highest maximum 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 values occurred in the urban area with 

readings of 95.97, 89.97 and 79.8 𝑔/𝑚3
, respectively. These high rates are correlated with 

traffic volume, the presence of buildings and high inter-vehicular times, generating an 

accumulation of particle number concentrations inside the tailpipe. The particle adhesion 

phenomenon induces an increase in particle mass concentrations (𝑃𝑀𝐶) but not 𝑃𝑁𝐶. In 

contrast, the lowest averages of 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 values were found in suburban and 

rural areas, with readings of 37.55, 26.66 and 15.14 𝑔/𝑚3 
(Table 3.3). During suburban-

rural driving, road conditions are in fact characterized by very fluid traffic inducing a 
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reduction in the inter-vehicular time. Furthermore, the presence of fewer buildings favors a 

dispersion phenomenon. Fig 3. 4a displays 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 variations throughout  

 

Figure 3.  4: PM10, PM2.5 and PM1 concentrations over four sampling sites in Lyon 

 

the urban road segment, where the minimum – maximum range of 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 

concentrations were 11.01 − 95.97 𝑔/𝑚3
, 6.31 − 89.97𝑔/𝑚3

 and 3.53 − 79.8 𝑔/𝑚3
, 

respectively. Furthermore, the average values of 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 were calculated at 

41.97, 29.46 and 17.37 𝑔/ 𝑚3
, respectively (Table 3.3). These results are significantly 

lower than those obtained by (Hussein et al., 2019), whose average 𝑃𝑀10 and 𝑃𝑀2.5 equaled 

89 and 60 𝑔/𝑚3. The measurements from the previously reported study were conducted in 

the Middle East and North Africa (𝑀𝐸𝑁𝐴) Region, characterized by a large area of 

arid/desert terrain in its southeastern part, which is not all the case for Lyon (site of the 

present study). In fact, dust storms and sand originate from three main regions: the Arabian 

Peninsula, North Africa, and the Levant. In addition, measurement periods differed for the 

two compared studies.  
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Table 3.  3: Min, Max and average concentrations of 𝑷𝑴𝟏𝟎, 𝑷𝑴𝟐. 𝟓 𝒂𝒏𝒅 𝑷𝑴𝟏 

𝑃𝑀 

variation 

𝑃𝑀10 (𝑔/𝑚3
) 𝑃𝑀2.5 (𝑔/𝑚3

) 𝑃𝑀1 (𝑔/𝑚3
) 

Min Max 
Mean± 

SD 
Min Max 

Mean± 

SD 

 

PM2.5/ 

PM10 

(%) 

Min Max 
Mean± 

SD 

PM1/ 

PM10 

(%) 

D1 11.01 95.97 
41.97± 

13.46 
6.31 89.97 

29.46 ± 

11.27 
70.19 3.53 79.8 

 

17.37± 

9.77 

41.38 

D2 4.92 75.61 
37.55± 

13.45 
1.79 61.86 

26.66 ± 

11.55 
71.01 0.84 36.15 

 

15.14± 

6.94 

40.33 

D3 4.94 89.53 
37.82± 

16.98 
1.35 85.56 

28.72± 

15.67 
75.93 0.62 79.73 

 

17.27± 

12.23 

45.66 

D4 8.35 77.38 
43.96± 

12.54 
4.24 59.37 

31.85± 

10.28 
72.45 2.18 42.88 

 

18.62± 

6.38 

42.35 

 

The current study was performed during summer, while the Hussein et al. study took place in 

the spring. With the particle mass concentration being strongly influenced by temperature, it 

increases during spring and decreases in summer, as found by (Bilalet al., 2019). Moreover, 

(Bilal et al., 2019) demonstrated that the average urban 𝑃𝑀2.5 was between 23.15 and 

24.10 𝑔/𝑚3
, i.e. close to the value obtained in the present study (29.46 𝑔/𝑚3

). Fig. 3.4b 

reveals 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 variations throughout the suburban-rural road segments, 

where the minimum - maximum range of  𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 concentrations were 

4.92 − 75.61 𝑔/𝑚3
, 1.79 − 61.86 𝑔/𝑚3

 and 0.84 − 36.15 𝑔/𝑚3
, respectively. 

Furthermore, the average 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 values were 37.54, 26.66 and 15.14 𝑔/

𝑚3
, respectively (Table 3. 3). The average 𝑃𝑀2.5 value was slightly higher than that obtained 

by (Bilal et al., 2019) (18.20 𝑔/𝑚3
). These reported rates are lower than those obtained in 

urban areas, as demonstrated, for example by Hand et al., (2019) and Li et al., (2014). Fig. 

3.4c shows 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 variations throughout the motorway segment, where the 

minimum - maximum 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 concentrations varied between 4.94 −

89.53 𝑔/𝑚3
, 1.35 − 85.56 𝑔/𝑚3

 and 0.62 − 79.73 𝑔/𝑚3
, respectively. For this road 

type, the average 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 values were 37.82, 28.72 and 17.27 𝑔/ 𝑚3
. 
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Lastly, Fig. 3. 4d presents the 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 variations over the 𝑅𝑁6 highway 

(along the ring road), where the minimum - maximum mass concentrations varied from 

8.35 − 77.38 𝑔/𝑚3
, 4.24 − 59.37𝑔/𝑚3

 and 2.18 − 42.88 𝑔/𝑚3
, respectively. The 

average 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀1 for 𝑅𝑁6 were 43.96, 31.85 and 18.62 𝑔/𝑚3 
(Table 3.3). 

The standard deviations (𝑆𝐷) remained low during all measurement days, as concluded by 

Srimuruganandam and Nagendra, (2010) who explained that particle mass 𝑃𝑀1, 𝑃𝑀2.5 and 

𝑃𝑀10 displayed a similar response around the dataset average (Table 3. 3). 

As far as the authors' knowledge is of concern, no previous study in Lyon has simultaneously 

compared a continuous 𝑃𝑀1, 𝑃𝑀2.5 and 𝑃𝑀10 series on urban, rural, motorway and national 

roads under real-world conditions (i.e. traffic, climate, driver behavior, etc.). For this reason, 

our findings have been compared with results obtained from other studies conducted abroad, 

which has led to inaccurate comparisons due to differing climate conditions, traffic volumes, 

road signage and geometry, etc. Furthermore, the principal reasons for each dissimilarity in 

the literature might be changes in experimental methods, especially the absence of a standard 

protocol.  

- PM2.5/PM10 and PM1/PM10 average concentration ratios 

Compared with 𝑃𝑀10 and 𝑃𝑀2.5, 𝑃𝑀1 must receive greater attention due to its longer 

atmospheric lifetime, health risks and smaller size (Dominici et al., 2014). 𝑃𝑀1 acts as a 

carrier of toxic substances and penetrates deep into the lungs (McEntee and Ogneva-

Himmelberger, 2008). An emergency solution is therefore required to prevent against this 

harmful phenomenon in order to ensure a sustainable community. Since coarse and fine 

particles were both produced from various sources, the 𝑃𝑀2.5/𝑃𝑀10 ratio can furnish 

critical information associated with particle source (Speranza etal., 2014). High 𝑃𝑀2.5/

𝑃𝑀10 ratios indicate low proportion of coarse particles originating from anthropogenic 

sources (e.g. vehicle exhaust). In contrast, low 𝑃𝑀2.5/𝑃𝑀10 ratio values suggest the strong 

participation of coarse particles, which might be influenced by natural sources (e.g. dust 

storm, increased solar radiation) and traffic (Alam et al., 2011; Sugimoto, 2016). The 

𝑃𝑀2.5/𝑃𝑀10 values ranged between 71.01 %  and 75.93 %, which is nearly the same 

interval found in urban areas by Giugliano et al.,(2005). In the present study, 𝑃𝑀1/𝑃𝑀10 

ratios were low, varying between 40.33 %  and  45.66 %; this fact underscores that the 

crustal elements lie mainly in the coarse fraction (Alam et al., 2011; Titos et al., 2014). Figure 

3.4 shows the minimum, maximum and average 𝑃𝑀1, 𝑃𝑀2.5 and 𝑃𝑀10 concentrations for 
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all investigated sites. The 𝑃𝑀2.5 and 𝑃𝑀10 values greatly exceeded the 𝑊𝐻𝑂′𝑠 

recommended maximum concentrations of 25 𝑔/𝑚3
 for 𝑃𝑀 2.5 and 50 𝑔/𝑚3

 for 𝑃𝑀10 

(on a 24 − 𝑕 basis). PM1 is still not regulated in the European Union (𝐸𝑈) despite its high 

rates, reaching 79.8 𝑔/𝑚3
 in the Lyon conurbation. Regardless, these 𝑃𝑀1 measurements 

contribute to accurate prediction of anthropogenic particles (Perrone et al., 2013), 

representing a major portion of 𝑃𝑀2.5 and, practically speaking, may even be more harmful 

than 𝑃𝑀2.5. In this context, the contribution of 𝑃𝑀1 in 𝑃𝑀10 and 𝑃𝑀2.5 has limited 

coverage in the literature despite the fact that 𝑃𝑀 size dependence is a good indicator for air 

quality monitoring. In addition, with its small size, 𝑃𝑀1 easily contributes to penetrating into 

the human cardiovascular and respiratory systems, causing an increase in blood coagulability 

and lung disease. Particulate matter emissions are heavily influenced by local ambient 

temperature, inducing catastrophic phenomena like acid rain. Particulate matter may become 

deposited on the water or ground and carried by wind over long stretches. Exposure to both 

ambient 𝑃𝑀2.5 and 𝑃𝑀1 are also strongly correlated with the increase in the number of 

emergency hospital visits. 𝑃𝑀1 is thus the main cause of most health effects from 𝑃𝑀2.5 

(Chen et al., 2017). These damaging implications should be assessed, controlled and regulated 

immediately. 

 

3.1.2.2. Particle Number Concentration (𝑷𝑵𝑪) 

Fig. 3.5 presents the 𝑃𝑁𝐶𝑠 on the various road segments (urban, rural, motorway, 𝑅𝑁6). The 

𝑃𝑁𝐶𝑠 were divided into particle numbers with a diameter greater than and less than 1 𝑚 

(𝑃𝑁𝐶 >  1) and (𝑃𝑁𝐶 < 1).  

This figure illustrates that both 𝑃𝑁𝐶 > 1 and 𝑃𝑁𝐶 < 1 𝑚 alongside a road are shaped like 

exponential functions. The 𝑃𝑁𝐶𝑠  with a diameter less than 1 𝑚 are too high, reaching 

8.12 · 107𝑐𝑚 −3
 with a particle diameter of 0.35 𝑚 on the motorway. Whenever the particle 

diameter exceeded 1 𝑚, the 𝑃𝑁𝑠 decreased rapidly. It is worth pointing out that this trend 

stems from large particles being eliminated faster due to the sedimentation phenomenon. The 

particle number from the vehicle tailpipe was actually characterized by a small diameter; 

consequently, as particle diameter increases, particle number decreases and vice versa. Fig. 

3.5a reveals that on the urban road, the majority of sampled particles have diameters smaller 

than 0.35 𝑚 and extend to 5.6 · 106𝑐𝑚-3
. In contrast, 𝑃𝑁𝐶𝑠 trend tend to zero with a 
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diameter above 3.5 𝑚 since particles <  2.5 m are mainly generated by vehicle tailpipe 

exhaust emissions (Pant et al., 2015). 

 

Figure 3.  5: PNC during all road segment types 

Results showed that human health is seriously endangered as pedestrians and cyclists are 

directly exposed to these harmful particulates. Villafuerte et al., (2017) found that the 

maximum 𝑃𝑁𝐶𝑠 in urban exhaust emissions were slightly higher than 1.1 · 105
. 𝑐𝑚-3

, which 

is considerably lower than the values obtained in this study. In fact, the present study was in 

fact conducted using the 𝐸𝑢𝑟𝑜 3 tailpipe exhaust emissions, while the aforementioned 

research was tested with 𝐸𝑢𝑟𝑜 6. The average vehicle exhaust for urban 𝑃𝑁𝐶𝑠 equals 7.4 ·

105 𝑐𝑚-3
, which is much higher than the value of  3.7 · 104𝑐𝑚 −3 

obtained by Patton et al., 

(2012) due to both traffic volume and a different pollution source. These authors indeed 

measured 𝑃𝑁𝐶𝑠 in a residential area renowned for its low traffic volume; moreover, they 

revealed that the main pollution source in the study area was residential heating. Fig. 3.5b 

shows that on the rural road, the behavior of the 𝑃𝑁𝐶 curve follows the same pattern as the 

urban 𝑃𝑁𝐶𝑠 for diameters smaller and larger than 1 𝑚.  However, the maximum rural 𝑃𝑁𝐶𝑠 
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are lower than their urban counterparts, which is in agreement with Cazier etal., (2016). The 

rural 𝑃𝑁𝐶𝑠 present a mean of 5.15 · 105 𝑐𝑚-3
. Fig. 3.5c illustrates that motorway 𝑃𝑁𝐶𝑠 

follow the same trends as the two-previous road types. However, the maximum motorway 

𝑃𝑁𝐶𝑠 (8.12 · 107
) were higher than on urban or rural roads, as found by Kontses et al., 

(2020), due to a high constant speed (e.g. Banerjee and Christianb, 2019). This outcome 

could, in fact, be anticipated due to the high turbulence produced from the traffic generated at 

high speed with a dry climate. Furthermore, the exhaust emissions include in large part a 

mixture of road surface wear and dust. The on-road average exhaust PN concentration along 

the motorway was 6.7. 106 𝑐𝑚-3
 (Table 3. 4). Fig. 3.5d demonstrates that in 𝑅𝑁6, the 𝑃𝑁𝐶 

curve follows the same trends as the last three road types discussed previously. In contrast, 

the maximum national road 𝑃𝑁𝐶𝑠 were less than motorway 𝑃𝑁𝐶𝑠 and greater than the rural 

and urban 𝑃𝑁𝐶𝑠, which reached as high as 4.3 · 107𝑐𝑚-3
 due to a high constant speed and a 

heavy-duty vehicle (Table 3.4).  

Table 3.  4:  Mean particle number concentrations 

 

 

 

 

 

 

 

 

The geometry of the national road happens to be characterized by a high curvature radius, 

thus requiring more power in order to ensure vehicle equilibrium in the roadway axis (to 

handle the centrifugal force). 

In conclusion, motorway 𝑃𝑁𝐶𝑠 exhibited the highest rates compared to the other three road 

types due to a high constant speed, which is in agreement with several studies (e.g. Geller et 

al., 2005; Imhof et al., 2005; Maricq et al., 1999; Simonen et al., 2019). However, rural 

𝑃𝑁𝐶𝑠 displayed the lowest rates compared to the other three road types due to several factors, 
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namely: low traffic volumes, few acceleration/deceleration maneuvers, short inter-vehicle 

times (i.e., free-flow conditions), and limited obstacles (buildings) to promote the dispersion 

phenomenon. The minimum particle number recorded was very low, with large-sized 

diameters (> 10 𝑚), since exhaust particles are essentially ultrafine or fine particles. Keep 

in mind this analysis is limited given that the 𝑂𝑃𝐶 𝐺𝑅𝐼𝑀𝑀TM 
(ref. 𝐸𝐷𝑀 1.108) is 

inappropriate for accurately assessing the number of ultrafine particles (below 100 𝑛𝑚), for 

which the number concentration should be higher. 

The current study has faced many of the difficulties inherent in comparing results obtained 

with those in the literature. Many reasons can be cited, including: (1) Only a few studies have 

focused on measuring the 𝑃𝑁𝐶𝑠 of tailpipe exhaust emissions at the micro-scale under real-

world conditions on urban, suburban-rural, motorway and national (ring) roads; (2) To the 

best of the authors' knowledge, no previous study has ever compared 𝑃𝑁𝐶𝑠 across the various 

road types using micro-scale measurements in the Lyon region despite its dense population; 

and (3) No study has ever focused on comparing diesel tailpipe exhaust 𝑃𝑀1, 𝑃𝑀2.5 and 

𝑃𝑀10 measurements in urban, suburban-rural, motorway and national roads under actual 

traffic conditions of Lyon -France. 

4.1.2.3. Influence of vehicle speed 

In order to assess the effect of vehicle speed/ acceleration on the evolution of nanoparticles in 

the size range of  0.35 −  22.5 𝑚, simultaneous measurements are executed using the global 

positioning system 747𝑃𝑟𝑜 (𝐺𝑃𝑆) for vehicle speed and particle size distribution at 4 𝑐𝑚 

distance from the exhaust with the 𝐺𝑅𝐼𝑀𝑀 analyzer, series 1.108. Variations of total number 

concentration with abrupt acceleration and deceleration maneuvers of diesel vehicles for both 

forward and backward directions are depicted from Fig. 3.6.  The first peak observed in all 

curves is due to incomplete combustion with short distances traveled during the first 2 𝑘𝑚 of 

the trip and a cold engine (Chen et al., 2017; Zhu et al., 2016). Then, it is observed that the 

total number concentration increases even for sharp deceleration maneuvers. In fact, this is 

due to in homogeneity in the engine mixture throughout sharp deceleration and related change 

in fuel-air mixture. Similar results have been revealed in on-field measurements obtained by 

(Banerjeea and Christian, 2019; Giechaskiel et al., 2007) on diesel vehicle. They 

demonstrated that the total particle number concentrations over deceleration maneuvers 

related to the increase in Air/ Fuel (𝐴/𝐹) ratio leading to a reduction in the available surface 

area of solid particles. 
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Figure 3.  6: Speed versus total number concentration recorded on-road from diesel vehicle 

 

 

Section 2:  Vehicle non-exhaust emissions 

3.2. 1. Materials and methods 

3.2.1. 1. Study areas 

Measurements took place during July 2019 in the vicinity of Lyon (France). The total 

mileage traveled for all sampling day measurements was approximately 172 𝑘𝑚, including 

both forward and backward directions. This large population number underscores the 

importance of this research through exposing the risk to the human body to different types of 

road traffic air pollution (specifically for urban, and rural roads).  Non-exhaust particle 

concentrations including; resuspension, bake, tire and road surface wear were collected either 

during the morning or evening period, depending on climate conditions (Fig. 3.7).  
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Figure 3.  7: Field study set-up (non-exhaust emissions) 

 

Measurements have mainly been obtained in urban (Bron-Décines-Meyzieu), rural (Corbas- 

Saint-Just Chaleyssin) and motorway (𝐴46) (Fig. 3.8). The mileage traveled was not the same 

on all sampling days, it depended upon the road type (urban, rural or motorway). 

Fig. 3.8a depicts the first day's itinerary of mobile sampling measurements on an urban road. 

The operating mode was adjusted according to the speed, idle acceleration and time via the 

global positioning system (𝐺𝑃𝑆) under real-world monitoring with a 1 − 𝑠 resolution. The 

itinerary was extended from Bron to Meyzieu. Fig. 3.8b illustrates the rural itinerary (Corbas- 

Saint-Just Chaleyssin). Fig. 3.8c represents the third day's mobile sampling itinerary along the 

𝐴46 motorway. In all sampled measurements, the current study has taken into account both 

forward and backward directions. 
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Figure 3.  8: Road map of the various study areas 

Table 3.5 lists detailed information on all the mobile measurements, including time, road 

type, mileage traveled and direction. Three days of measurements were processed in order to 

evaluate non-exhaust particle concentrations for the three tested road types, again in both 

directions. Trip duration varied according to road type. 

Table 3.  5: Related data for all sampling measurement days 

Measurement 

day 
Direction Road type 

Distance 

(𝑘𝑚) 

Min. 

temp. 

(°𝐶) 

Max. 

temp 

(°𝐶) 

Mean 

temp. 

(°𝐶) 

Precipitation 

(𝑚𝑚) 
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D1 

Forward 

Urban 

33 

17 30 20 No 

Backward 32 

D2 

Forward Rural 

 

15 

17 31 21 No 

Backward 16 

 

D3 

 

 

Forward 

Motorway 

35 

18 32 24 No 

Backward 39.6 

 

3.2.1.2. Instrumentations 

The same instruments have been used in the section of estimating vehicle exhaust PNCs 

(section 1).  

3.2.1.3. Sampling and measurement strategies 

Non-exhaust particle emissions (resuspension, tire, brake and road surface wear) were 

investigated under real-time driving conditions (continuous speed profiles, with different 

mileages varying between 32 up to around 75 km). The summer tire (dimension 185/

75𝑅16𝐶) was chosen to study variation in wear and particle emission between different tires 

and roads under real-time conditions. Sampling measurements have been conducted under dry 

weather conditions (𝑇 =  17– 32 °𝐶 with 23 %– 67 % humidity) and moderate wind speed 

(<  30 𝑘𝑚. 𝑕-1
). The same driver was kept and maintained for all the experimentations in 

order to maintain the same driving style and conditions throughout all sampling days. 

Instantaneous speed profiles and instantaneous acceleration profiles were recorded at 1 𝐻𝑧 

frequency regardless of driving conditions. The scientific instrument was installed behind the 

utility car. The 𝐺𝑅𝐼𝑀𝑀 was chosen due to its small size and light weight comparatively to 

other atmospheric particle instruments (for example, 𝑃𝐸𝑀𝑆, 𝐹𝑀𝑃𝑆). In fact, heavy 

instruments may provide inaccurate data due to their weight on vehicle engine efficiency. A 

𝐺𝑅𝐼𝑀𝑀 did not require power generators due to built-in battery that lasts between six- to 

eight-hours continuous operations. Furthermore, the highest 𝑇𝑅𝑊𝑃𝑠 are generally recorded in 

accumulation and coarse modes (Kim and Lee 2018; Beji et al. 2020). In addition, sampling 
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measurements were registered under real-time driving characterized by high acceleration and 

deceleration maneuvers.   

The inlet sampling probe was fixed in the axis of the wheel 5 𝑐𝑚 from the ground, 10 cm 

behind the tire and with a diameter of 1 𝑐𝑚.  𝑃𝑀 can be divided into 𝑃𝑀1, 𝑃𝑀2.5 and 

𝑃𝑀10 which are particles with aerodynamics smaller than 1 µ𝑚, 2.5 µ𝑚 and 10 µ𝑚 

respectively.  

Measurements were conducted on three different road segments in the vicinity of Lyon 

(France). Thirty-minutes were required before starting the trip in order to load all necessary 

tools inside the light utility vehicle. All staff members exercised caution not to exceed five 

hours of charging, which would have caused the battery to discharge. Moreover, before 

initiating each sampling measurement, zero calibrations were regulated on both the 

𝐺𝑅𝐼𝑀𝑀1.108 aerosol spectrometers and the 𝐺𝑃𝑆.  

3.2. 2. Results and discussion 

3.2.2.1. Particle number distributions under various driving conditions 

Studies have reported the generation of ultrafine particles with diameters of  30 − 60 𝑛𝑚 and 

particle with diameter sizer lower than 30 𝑛𝑚 for studded and non-studded tires, respectively 

(Dahl et al. 2006; Foitzik et al. 2018), equally with the emission of a coarse fraction (Kwak et 

al. 2013; Kim et al. 2018). The vehicle of the actual study was fitted with summer tires. Fig. 

3.9 presents  𝑃𝑁𝐶𝑠 on various road segments (urban, rural and motorway). 𝑃𝑁𝐶𝑠 were too 

high with a diameter less than 1 𝑚, which reaches up to 1.85.107
.𝑐𝑚-3 

on motorway.  

Whenever the particle diameter exceeded 1.3 𝑚,  𝑃𝑁𝑠 decreased rapidly. It is worthy 

pointing out that this trend stems from large particles being eliminated faster due to the 

sedimentation phenomenon. We shall precise that during all measurement days, 𝑃𝑁𝐶𝑠 were 

characterized by a bimodal distribution at coarse mode with 0.35 and 1.3 𝑚, respectively. It 

was found that cold start emissions (about the first 2 𝑘𝑚 of the trip) were composed of non-

volatiles particles (coarse mode particles). However, in other available published studies 

dealing with measurement of 𝑃𝑁𝐶𝑠 with an optical diameter ranging from 6 𝑛𝑚 to  22.5 𝑚, 

it was shown that bimodal distribution centered at approximately 200 𝑛𝑚 and a coarse peak 

at 2 𝑚 (Beji et al. 2020). 
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Figure 3.  9: Non-exhaust particle size distributions under real driving conditions in (a) urban, 

(b) rural and (c) motorway areas 

This slight difference in modal size could be explained by the sampling methods, traffic 

conditions and the instrumental properties inherent or not all non-exhaust factors are taken 

into account in this analysis.  

Fig. 3.9a reveals that on the urban road, the majority of sampled particles have diameters 

smaller than 0.35 𝑚 and extend to 1.9.106𝑐𝑚-3
, followed by a second light peak at 1.3 𝑚 

that reaches 1.49 .105𝑐𝑚-3
. The same trends are shown in Fig. 3.9b, the highest particle 

concentrations appeared at 0.35 µ𝑚 with 3.4 .106 𝑐𝑚-3 
in rural area. The high concentration 

on rural road as compared to urban road is mainly due to high vehicle speed. Fig. 3.9c 

illustrates particle size distributions on motorway. The maximum motorway 𝑃𝑁𝐶𝑠 were 

higher than those found in both urban and rural zones, which are as high as 1.85.107𝑐𝑚-3 
due 

to high speed, pavement materials and abrupt vehicle acceleration and deceleration 

maneuvers. 
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Generally, concrete roads (motorway) are more pollutant than asphalt roads (urban - rural), as 

outlined by Pant and Harrison (2013).  They demonstrated that concrete surfaces cause more 

tire abrasion than asphalt surfaces; 𝑃𝑀 emissions are 1.4 to 2 times higher for concrete roads 

than for asphalt roads. However, this result remains relative and depends upon the tire type, 

drive behavior and climate conditions. 

 

3.2.2. 2. Effect of vehicle speed on 𝑷𝑴 concentrations 

In real-time measurements, different instantaneous speed profiles depending on road type 

(urban, rural and motorway) were taken into account to investigate the effect of vehicle speed 

on 𝑃𝑀 mass. Fig. 3.10 shows the average 𝑃𝑀10, 𝑃𝑀2.5 and 𝑃𝑀2.5/𝑃𝑀10 ratios. It is worth 

noting that the increase of 𝑃𝑀 and 𝑃𝑀2.5/𝑃𝑀10 ratio is related to driving speed conditions. 

In fact, the highest 𝑃𝑀 and 𝑃𝑀2.5/𝑃𝑀10 ratio appeared on motorway due to high vehicle 

 

 

Figure 3.  10: Average particulate PM concentrations, PM2.5/PM10 ratio 

speed (𝑉9
m1= 89.82𝑘𝑚. 𝑕-1

). In contrast, the lowest 𝑃𝑀 and 𝑃𝑀2.5/𝑃𝑀10 ratio were found 

on urban road (𝑉10
m2= 34.95 𝑘𝑚. 𝑕-1

) as validated by several studies (i. e. Grigoratos et al. 

2018; Kim and Lee 2018; Beji et al. 2020). A linear relationship was obtained between 

𝑃𝑀2.5, 𝑃𝑀10, 𝑃𝑀2.5/𝑃𝑀10 ratio and the driving speed with high coefficient of 

determination 𝑅2
 of 0.85, 0.84 and 0.96, respectively. The relative contribution of 𝑃𝑀2.5 to 

                                                 
9
 Vm1= Average speed in motorway expressed in km/h 

10
Vm2= Average speed in urban road expressed in km/h 
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𝑃𝑀10 (the ratio 𝑃𝑀2.5/𝑃𝑀10) varied from 0.31 𝑡𝑜 0.435. However, Kim and Lee 2018 

reported lower values compared to our obtained results, where they reported 0.24 up to 0.32 

as the contribution of 𝑃𝑀2.5 to 𝑃𝑀10. This is because particulate matter from road traffic is 

induced also from resuspension in addition to tire, brake and road wear, which is not the case 

in laboratory measurements. Indeed, particulate matter resuspension could be defined as fresh 

produced particles from abrasion and stress as well as older located road dust refreshed and 

transported into the atmosphere. 

The results show that 𝑃𝑀 and 𝑃𝑀2.5/𝑃𝑀10 ratio were positively correlated with vehicle 

speed. In fact, 𝑃𝑀2.5 and 𝑃𝑀2.5/𝑃𝑀10 ratio continuously increased as vehicle speed 

increased depending on road type. Particles occur through volatilization and by shearing 

(Kreider et al. 2010) and friction forces. In fact, shearing forces mechanism practically 

induces in coarse particles, whereas volatile mechanism produces smaller fine particles via the 

evaporation (Kim and Lee. 2018). 

Under real-time measurements, shear stress acting on tire tread was wide, mostly on 

motorway due to high speed and the state of the tire. Indeed, the used tire in this experience 

was not put into circulation for the first time. Contrary to what was found by Kim and Lee. 

(2018), a limited shear stress was acting on tire tread with low 𝑃𝑀10 particles. This can be 

explained by the difference in experimentation as in this current study we took into account 

all real driving conditions including road dust emissions induced by mechanical vibration 

sieve (Wang et al. 2012), which is not the case for laboratory measurements. In this study, 

non-exhaust 𝑃𝑀10 concentration presents 64.58 µ𝑚. 𝑐𝑚−3, which is larger than the World 

Health Organization (𝑊𝐻𝑂) permissible limit (50 𝑔. 𝑚−3). The pronounced volatilization 

process related to high speed were produced on motorway as well as on rural roads (ring). In 

fact, the selected rural road geometry features a curvature that requires more power from the 

engine and higher speed in order to ensure equilibrium in the middle of the roadway. 

Moreover, it is characterized by high traffic density, especially by heavy vehicle category. 

Here we notice that the increase in non-exhaust 𝑃𝑀 concentration is strongly related to the 

increase in vehicle speed and vice-versa as validated by several studies (i. e. Hussein et al. 

2008; Grigoratos et al. 2018; Kim and Lee 2018; Beji et al. 2020). This might be due to 

turbulence air streams, suspension, increasing road wear of accumulated particles and high 

proportion of heavy-duty vehicles (𝐻𝐷𝑉𝑠). In fact, Wagner et al. 2018conducted a review 

paper where they outlined that 𝐻𝐷𝑉𝑠 produced approximately ten times more 𝑇𝑊𝑃 than 

passenger cars and light duty vehicles (𝐿𝐷𝑉𝑠). 
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3.2. 2.3. Vehicle speed effect on particle concentrations 

In order to investigate the effect of vehicle speed on particles evolution (in terms of 

concentration number) induced from non-exhaust in the range of 0.35 −  22.5 𝑚, 

simultaneous assessment is taken out applying the 𝐺𝑃𝑆 for vehicle speed on different road 

surface types (urban, rural and motorway). The variation in total number of non-exhaust 

concentrations versus vehicle speed in urban, rural and motorway is provided in Fig. 3. 11 

(a,b) and Fig. 3. 11c, respectively. The maximum and minimum 𝑃𝑁𝐶𝑠 appeared on motorway 

and urban were 1.85. 107
 and 1.9.106. 𝑐𝑚−3, respectively. These findings may be explained 

by the high speed on motorway resulting in substantial increase of 𝑃𝑁𝐶𝑠 as outlined by Béji 

et al. (2020). Obviously, this result highlights an increase in the coarse particles at high speed. 

This is because more shear stresses and turbulent air streams developing at the road tire 

pavement interface resulted in an increase in particle concentrations. Consequently, a 

remarkable change took place in the super micron fraction of the wheel rear ambient aerosol.  

This current work as well as other available published studies have confirmed that vehicle 

speed is an important parameter to be considered to accomplish strategies to mitigate non-

exhaust particle emissions from road traffic (i. e. Dahl et al. 2006; Gustafsson et al. 2008; 

Hussein et al. 2008; Foitzik et al. 2018).  
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Figure 3.  11: Vehicle speed versus total particle number concentrations (PNCs) recorded in 

urban, rural and motorway areas 

 

3.2.2.4. Positive and negative vehicle acceleration effect on non-exhaust 

particle concentrations 

In order to evaluate the influence of vehicle speed on non-exhaust PNCs, it is important to 

include acceleration and deceleration (A/D) maneuvers in the analysis. In specific road 

geometry (curvature with sharp radius, speed bumps, etc.), traffic conditions (congested 

traffic, accident, etc.) and driver behavior (aggressive driving) both acceleration and 
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deceleration maneuvers can engender a pronounced effect on non-exhaust emissions (Luhana 

et al., 2004). Significant non-exhaust particle concentrations were registered in coarse mode 

during A/D cycles (Fig. 3.12).  

 

Figure 3.  12:  Evolution of non-exhaust PNCs versus positive and negative acceleration in (a) 

urban, (b) rural and (c) motorway areas. 

Fig. 3.12a shows 𝑁𝐸𝑃 concentrations versus positive and negative acceleration in urban area. 

It demonstrates several negative acceleration maneuvers due to speed bumps, pedestrian 

crossing and traffic light. Abrupt positive vehicle acceleration [10 − 38 𝑚. 𝑠−2] induced 

abundant 𝑁𝐸𝑃 concentrations. This significant increase in particles rate that varies from 

1.79.104
 to 1.07.105

.cm
-3

 may be explained by different generation mechanisms like tire wear 

under elevated temperature or related with a more abundant road dust fragmentation. Fig. 

3.12b illustrates 𝑁𝐸𝑃 concentrations versus positive and negative acceleration in rural area. 
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The geometry of the rural road is generally characterized by a high curvature change radius, 

thus requiring more A/D maneuvers. The rural 𝑁𝐸𝑃 concentrations were 3 times higher when 

comparing the vehicle positive acceleration passing from (− 24) to (+57.13) 𝑚. 𝑠-2
. In 

contrast, with stable speed where the positive and negative vehicle acceleration were around 

zero, it showed a significant decrease in 𝑁𝐸𝑃 concentrations. Rural road is characterized by 

sharp rate of positive and negative vehicle due to road geometric (curvatures) and road 

maintenance during measurement days. Fig. 3.12c indicates motorway 𝑁𝐸𝑃 concentrations 

versus positive and negative acceleration maneuvers. The 𝑁𝐸𝑃 concentrations were 11 times 

higher when comparing the vehicle negative acceleration passing from (+52) to (-12) 𝑚. 𝑠−2. 

The significant increase in 𝑁𝐸𝑃 concentrations with sharp positive and negative vehicle 

acceleration maneuvers suggests that an aggressive driving produces more abundantly tire 

road wear particles than with an economic driving style (Boulter 2005; Kwak et al. 2013). 

Despite that, the urban area is distinguished by a high rate of vehicle A/D maneuvers, while 

not admitting the highest particle emissions. This is because in urban area generally the speed 

does not exceed  50  𝑘𝑚/𝑕, which cannot generally engender a sharp vehicle A/D maneuvers. 

Unlike to motorway and rural roads, with a sudden vehicle A/D maneuvers can engender an 

extreme A/D rates. 

3. 3. Concluding remarks 

In the present chapter, mobile micro-scale, real-world measurements of exhaust 𝑃𝑀1, 𝑃𝑀2.5, 

𝑃𝑀10 and 𝑃𝑁 on four distinct road types (urban, rural, motorway, 𝑅𝑁6 national road) in the 

Lyon region have been investigated. In order to examine particles within the 0.35 − 22.5 𝑚 

range, we compared both on-road diesel particle mass and number among various road types. 

Results indicated similar pattern (exponential trends) in particle number concentrations over 

four road types for both particle diameters both smaller and greater than 1 𝑚. The highest 

average vehicle exhaust particle number concentration was recorded on the motorway, at 

6.7 · 106
, where the highest value was found at 0.35 𝑚. The particle counts thus exceeded 

𝑊𝐻𝑂's permissible limit for both 𝑃𝑀2.5 and 𝑃𝑀10, i.e. at 25 𝑔. 𝑚-3
 and 50 𝑔. 𝑚-3. These 

results demonstrate that particle mass is heavily influenced by stop-and-go traffic; Moreover, 

𝑃𝑁. 𝑃𝑀1 concentrations are not yet regulated in the 𝐸𝑈, despite its high mass rates and 

hazardous health effects (e.g. cardiovascular and respiratory problems, cancer), in reaching as 

high as 79.8 𝑔. 𝑚-3on motorway. The study of exhaust emissions underscores the usefulness 

of evaluating the contribution of individual vehicles. Consequently, on-road experiments 
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under actual driving conditions are critical to improving the scientific understanding of 

traffic-related air pollution in urban, suburban and rural areas. 

In addition to mobile micro-scale, real-world measurements of exhaust 𝑃𝑀1, 𝑃𝑀2.5, 𝑃𝑀10 

and 𝑃𝑁, this chapter has been investigated the 𝑁𝐸𝑃𝑠 (resuspension, tire, road surface and 

brake wear) under different road traffic areas.  

To recapitulate, in motorway real-time driving conditions, 𝑁𝐸𝑃 concentrations are higher in 

comparison with induced particles in rural and urban areas due to high speed, pavement 

materials and abrupt vehicle acceleration and deceleration maneuvers. 𝑁𝐸𝑃 concentrations 

were characterized by a bimodal distribution at coarse modes with 0.35 and 1.3 µ𝑚 ranges, 

respectively, within the three selected measurement days.  Large coarse of  𝑁𝐸𝑃 

concentrations were formed from the road dust resuspension, under stress of the tire with the 

pavement. Information gathered on the key parameters assessing non-exhaust particles in real-

time measurements can be employed to issue recommendations considered to mitigate non-

exhaust particle emissions and ensure sustainable mobility. Speed, sharp positive and negative 

vehicle acceleration maneuvers have a pronounced effect on 𝑁𝐸𝑃 concentrations. Linear 

relationship was found between 𝑃𝑀 (𝑃𝑀2.5, 𝑃𝑀10 and 𝑃𝑀2.5/𝑃𝑀10) ratio and the driving 

speed with high coefficient of determination, R
2
. The relative contribution of 𝑃𝑀2.5 to 𝑃𝑀10 

(the ratio 𝑃𝑀2.5/𝑃𝑀10) varied from 0.31 to 0.435. The abundant increase in 𝑁𝐸𝑃𝑠 with 

abrupt positive and negative vehicle acceleration maneuvers propound that irrational driving 

generates more significantly tire road wear particle concentrations than with rational (or 

economic) driving style. 

Moreover, our results showed that 𝑁𝐸𝑃 concentrations can vary with driving style and traffic 

conditions. In addition, it has been demonstrated that tire road wear can engender substantial 

particles with respect to mass and/or number particle concentration. Furthermore, 𝑁𝐸𝑃𝑠 could 

be significant contributors to particles in motorway area. Further researches using different 

tire types and pavement materials in real-time measurements should be conducted to 

definitively define the effects of 𝑁𝐸𝑃𝑠 on human health, climate change and environment 

impact. 
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Chapter 4. Modeling of particle number exhaust and non-exhaust 

emissions 

4. 1. Introduction 

Nanoparticles have dangerous effects on ambient air quality (Watson, 2002), human health 

(Tang et al., 2017; Belkacem et al., 2021) and environmental impact (Silva et al., 2021). 

Nanoparticles recorded a remarkable increase in recent years. Diesel-powered vehicles reveal 

the major source of road vehicle pollution in the European Union. Urban road traffic areas 

engender various human activities and pollution that reveals considerable adverse 

environmental impacts (Stone et al., 2017; Belkacem et al., 2020). Particles with small size 

diameter displaying larger specific surface area and reveal high disposition fraction in the 

respiratory system (Giechaskiel et al., 2015). According to Epidemiological analyses, a 

pronounced relationship exists between pollution, the number of cardiovascular and 

respiratory tract disease victims and particle number concentrations (𝑃𝑁𝐶𝑠) (Kim et al., 2012; 

Skrzypek et al., 2013). Atmospheric pollutants issues are not a simple problem for assessing 

the emission sources. The complexity of particle exhaust emissions in the atmosphere is 

largely depending on driver behavior. In fact, the total number concentration is strongly 

influenced by sudden acceleration/deceleration maneuvers of the vehicle (Carnevale et al., 

2016). 

Exhaust emissions being generated from tailpipes are mainly due to incomplete fuel 

combustion inside the engine chamber. This is because, modeling ambient air pollutants and 

𝑃𝑁𝐶𝑠 is a critical research area for mitigating road transport emissions on environment.  

𝐴𝑁𝑁𝑠 were frequently applied for the simulation of the ambient air pollution and 

environment induced from road traffic. Benedetti et al., 2016 and Khayatian et al., 2016 

demonstrated the great potential of 𝐴𝑁𝑁𝑠 for predicting and modeling such problems. 

However, restricted research has been focused on simulating continuous real time 𝑃𝑁𝐶𝑠 from 

road traffic using 𝐴𝑁𝑁𝑠. (Antonopoulos et al., 2017; Vakili et al., 2017) and differentiate 

complex patterns in database without understanding required interconnectivity among input 

and output variables (Lu et al., 2016). 𝐴𝑁𝑁’𝑠 accuracy do not only depend on the quantity of 

data but also on the quality of data. The number of hidden layers and the architecture are the 

major factors that influence on the performance of the model. The extreme number of neurons 

in the hidden layer can generate an overfitting or underfitting, which creates in turn errors in 
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the estimated models. This case can be presented in the training stage. The number of neurons 

in the hidden layer is resolved by error and trial approach, which begins with one neuron then 

incremented one by one (Alp and Cigizoglu, 2007; Arjun and Aneesh, 2015).  The optimum 

number of neurons is determined practically by error and trial method rehashing 10 times at 

arbitrarily selected data points (Feng et al., 2015). The optimum number of neurons was 

chosen based on the least performance error as estimated by the coefficient of determination 

𝑅2 (Arjun and Aneesh, 2015) and Root Mean Square Error (𝑅𝑀𝑆𝐸) (Arjun and Aneesh, 

2015; Abdullah et al., 2016a). 

𝑃𝑁𝐶𝑠 were recorded in Lyon (France) using Grimm analyzer series 1.108. The locations and 

instantaneous speed profiles were simultaneously gathered by the global positioning system 

747 Pro (GPS). After that, we make the simulation of 𝑃𝑁𝐶𝑠 from urban road traffic by 

𝐴𝑁𝑁𝑠, 𝑀𝐿𝑃 and 𝐺𝑅𝑁𝑁. The model efficiency is assessed by applying statistical parameters; 

mean absolute percentage error (𝑀𝐴𝑃𝐸), coefficient of determination, (𝑅²) and Root mean 

squared error (𝑅𝑀𝑆𝐸). Finally, this study tends to compare the performance between the two- 

chosen 𝐴𝑁𝑁s methods.  

4.2. Artificial neural network models for ambient air 

pollution prediction 

Research studies in the field of emissions and ambient air pollution forecasting and predicting 

using artificial neural networks (𝐴𝑁𝑁𝑠) has been developed greatly in recent years. However, 

the improvement of 𝐴𝑁𝑁 models provides levels of accuracies given the black-box nature of 

𝐴𝑁𝑁s.  In fact, ambient air quality in urban areas has been assigned to premature mortalities 

and chronic diseases of vulnerable members of the public (World Health Organization, 2016). 

Recently, 𝐴𝑁𝑁s have been greatly applied in many short- and long-term predicting and 

forecasting applications (e.g. Cabaneros et al., 2017; Lightstone et al., 2017; Rahimi, 2017). 

Moreover, more practitioners resorted to data -driven methods such as 𝐴𝑁𝑁s as alternatives 

to physics-based or traditional deterministic approaches, such as the examples of Community 

Multiscale Air Quality model (𝐶𝑀𝐴𝑄) (Mueller and Mallard, 2011), Weather Research and 

Forecasting Model with Chemistry (𝑊𝑅𝐹/𝐶𝑕𝑒𝑚) (Chuang et al., 2011), the Urban Airshed 

Model (𝑈𝐴𝑀) (Chang and Cardelino, 2000). In fact, deterministic approaches are reactive to 

several factors, including the quality and scale of the parameters participated computationally 
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expensive and dependent on rich databases of several input variables, of which some may not 

be available (Jiang et al., 2017; Sun et al., 2013) 

4. 2.1. Methods applied for 𝑨𝑵𝑵 model development 

There are several accessible guidelines in the literature to make available future modelers with 

a systematic way of estimating 𝐴𝑁𝑁 models. The model elaboration process is subdivided 

into eight major steps: data collection, data pre-processing, selection of input variables, data 

splitting, selection of model architecture, determination of model structure, model training, 

and model validation (Maier et al., 2010).  

4. 2.1.1. Data collection 

Black-box models like 𝐴𝑁𝑁 models are data-dependent, practically complicate to integrate 

them with prior knowledge. Accordingly, the efficiency of 𝐴𝑁𝑁 models depends on the form 

and type applied to train them. In fact, the choice of various types of predictor variables plays 

a pivotal role in the model efficiency since ambient air pollution is a complex function of 

emissions and meteorology (colls, 2001). There is an abundance of predictor variables that 

have been examined in previous environmental modeling applications including emissions, 

meteorological variables (wind direction, wind speed, relative humidity), traffic, etc. 

(Cabaneros et al., 2019) and vehicle speed. 

4. 2.1.2. Data pre-processing 

Data pre-processing is an important step in the estimation of 𝐴𝑁𝑁 models. In fact, it tends to 

preliminary techniques that refer at assessing the representation of the gathered data. The two 

prevalent data pre-processing techniques in the area of environment and air pollution 

modeling that are contain missing data imputation and normalization. Normalization is 

applied to make sure that all predictors fall in equivalent range. This is a primordial step in 

model development as inputs with wide values disproportionately mask the effect of the other 

inputs with smaller ones. This measure should also be considered to coordinate the range of 

the predictors to those of the transfer function of the hidden layer (Cabaneros et al., 2019). 

Missing data induced from many factors like faults in data acquisition or errors in 

measurements and insufficient sampling. The simplest method to classify this problem is the 

substitution of missing data with the average of the entire dataset. However, this method is 
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highly inadvisable as this can disorder the inherent structure of the basic dataset, which can 

decrease the performance of the estimated model (Plaia and Bondi, 2006).  

4. 2.1.3. Selection of predictors 

The selection of the most appropriate 𝐴𝑁𝑁 model predictors for a forecasting problem is an 

important step. The performance of the 𝐴𝑁𝑁 strongly relies on the manner and form of which 

predictor variables are being fed into the model. However, the absence of the pertinent 

explanatory variables prevents the model from accurately approximating the underlying 

dynamics between target and predictors variables (Maier and Dandy, 2000). Several 

approaches are available in literature for selecting the most significant predictor variables of a 

given model. These approaches are divided into two major categories, known as model-based 

and model-free approaches. Model-based approaches execute input variable selection by 

resolving the impact of a candidate model predictor on the general model performance. In the 

other hand, model free approaches execute input selection without depending on the 

performance of the estimated 𝐴𝑁𝑁 models (Maier et al., 2010). 

4. 2.1.4.  Data splitting 

The division of data is an important step in the elaboration of 𝐴𝑁𝑁 models. In fact, this is 

executed out by parting the available data into three subsets; training, validation and test sets. 

The first subset (e.g. training) is employed for calibrating network biases and weights, as well 

as for computing the gradient. The second subset (e.g. validation) is employed to block the 

network training before overfitting appears. In fact, the error in the validation subset assesses 

the network performance/efficiency during training subset. When this error tends to increase 

for much iteration, the training is terminated, and the bias and weights values that induced the 

minimum error are then employed as the final trained network biases and weights (Hagan et 

al., 1995). The third subset (e.g. testing) is employed to resolve the generalization capability 

of the developed model. In fact, the error from this subset is employed to compare the 

predictive efficiency of different models. Data splitting can be divided into supervised and 

unsupervised approaches. Supervised approaches tend to divide the input variables into three-

subsets that take into account the statistical properties of each subset. However, unsupervised 

approaches do not take the statistical parameters of the data subsets into consideration, and 

only stratified unsupervised approaches tend to ensure that the statistical parameters of the 

subsets are identical (Maier et al., 2010).  
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5.2.1.5.  Selection of model architecture 

There are two-popular network architectures appropriate for forecasting and function 

approximation, namely the recurrent networks and feed forward (Hagan et al., 1995). In a 

feed forward network, data transfers in a unique direction from the input to the output layer. 

Among the most efficient feed forward 𝐴𝑁𝑁s are general regression neural networks 

(𝐺𝑅𝑁𝑁s), radial basis function networks (𝑅𝐵𝐹𝑁), extreme learning machine (𝐸𝐿𝑀) and ward 

neural networks. In addition, the most popular feed forward 𝐴𝑁𝑁s are the Multilayer 

perceptron (𝑀𝐿𝑃) for non-linear function (Shahraiyni and Sodoudi, 2016) 

4.2.1.6.  Determination of model structure 

The determination of model structure including the number of nodes in each layer and the 

number of layers is an important step in 𝐴𝑁𝑁 model development. The input variable layer is 

where the final network findings are calculated. Therefore, the number of target and input 

nodes are dependent on the number of target and predictors variables, successively. Finally, 

another layer in addition to the input and output layers, is known as hidden layer. It is in the 

hidden layer where the underlying dynamics between target and predictors variables is 

captured. When the number of nodes is sufficient, the 𝐴𝑁𝑁 can estimate almost any function. 

𝐴𝑁𝑁s may be developed by one or more hidden layers. The use of very limited number of 

hidden layers can lead to model underfitting, while the opposite situation results model 

overfitting (Samarasinghe, 2006).  A standard method that estimates the optimal number of 

neurons and hidden layers still remain unspecified, which can be considered as the initial 

difficulty in 𝐴𝑁𝑁 model building.  For this, there are several employed approaches to correct 

these weaknesses, namely, ad-hoc, stepwise trial-and-error and global (Cabaneros et al., 

2019). 

5. 2.1.7. Model training 

Training a model of 𝐴𝑁𝑁 is the process of evaluating the association weights between the 

inter-associated nodes of the network. Due to the connection of the node biases and weights 

that an 𝐴𝑁𝑁 can be qualified to estimate complex outputs. Training 𝐴𝑁𝑁 model is usually 

carried out in a supervised manner. Before training, 𝐴𝑁𝑁 biases and weights are typically 

initialized. Initial weighting is usually chosen randomly from a uniform distribution (Hagan et 

al., 1995). In the training process, the 𝐴𝑁𝑁 is frequently accorded with the intended network 
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response for every input pattern as the network biases and weights are adjusted until the target 

outcome (Cabaneros et al., 2019). 

4.2.1.8. Model validation 

The performance of 𝐴𝑁𝑁 model is typically evaluated using a quantitative error metric. 

However, 𝐴𝑁𝑁 models should not be evaluated simply on their predictive error, but through 

their potentiality to capture underlying dynamics between target and predictors variables 

(Kingston et al., 2005a, b). In fact, the performance of the 𝐴𝑁𝑁 models is based on three 

essential aspects of model validity; structural validity, predictive validity, and replicative 

validity (Gass, 1983; Humphrey et al., 2017). Metrics evaluating replicative validity perceive 

to it that a predicted model approximates both utilized data and those observed in previous 

𝐴𝑁𝑁 model (Gass, 1983). Recognized methods under this category include variance and 

means, maximum and minimum, goodness-of-fit-fit testing, analysis of variance, correlation 

and regression analysis (Wu et al., 2014). 

Section1: Modeling of particle exhaust emissions based on 

real-time measurements 

4. 1.1. Experimental protocol 

4. 1.1.1. Study area and data 

Measurements took place during July 2019 in urban (Bron -Meyzieu) – France (Fig.4.1). 

More details have been shown on sampling measurements, materials and methodology in 

chapter 4/section 1.  

 

Figure 4. 1: Field area 



94 

 

4.1.1.2. Methodology 

This study started by gathering the 𝑃𝑁𝐶𝑠 of exhaust emissions and vehicle speed under 

continuous real-time measurements using the 𝐺𝑅𝐼𝑀𝑀 series 1.108 Aerosol Spectrometer and 

𝐺𝑃𝑆 (747 Pro), respectively. After that, the data has been filtered and analyzed, then 

synchronized to obtain a step of time 1 𝑚𝑖𝑛 for both vehicle speed and particle number 

concentrations. Subsequently, two 𝐴𝑁𝑁𝑠 models (Multi-Layer Perceptron (𝑀𝐿𝑃) and 

General Regression Neural Networks (𝐺𝑅𝑁𝑁)) have been chosen to predict particle number 

concentration from real-time exhaust emissions in urban French area. In fact, the same input 

variables have been selected for both 𝑀𝐿𝑃 and 𝐺𝑅𝑁𝑁 that present vehicle speed and 

positive/negative vehicle acceleration maneuvers. 𝑃𝑁𝐶𝑠 measured by the Grimm have been 

considered as the Target for 𝐴𝑁𝑁𝑠 models (𝑀𝐿𝑃 and 𝐺𝑅𝑁𝑁). Finally, this study tends to 

compare Grimm and 𝐴𝑁𝑁𝑠 outputs. Then, the test was ended when the error reached its 

minimum. The flow chart methodology that was followed to model the continuous vehicle 

exhaust 𝑃𝑁𝐶𝑠based on real experimental details summarized in Figure 4.2.  

 

 

Figure 4. 2:  Flow chart Methodology for exhaust PNCs 

4.1.2. Artificial Neural Networks (𝑨𝑵𝑵𝒔) 
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𝐴𝑁𝑁𝑠 are among the most efficient computational models that practically approximate the 

same behavior as human brain. 𝐴𝑁𝑁𝑠 have been extensively applied for forecasting and 

predicting in ambient air pollution, due to their accuracy and reliability to estimate any non-

linear function (Nielsen et al.,2015). 𝑀𝐿𝑃𝑠 are among the most applied architectures of the 

feed-forward networks employed by researchers (Maier et al., 2010). In this section, the 

𝐺𝑅𝑁𝑁 and 𝑀𝐿𝑃 were chosen to model and predict particle number exhaust emissions. 

- Multi-Layer Perceptron (𝑴𝑳𝑷) 

The Feed Forward topologies are among the most used Multi-Layer Perceptron (𝑀𝐿𝑃) 

models in air pollution prediction. The input variables produce input signals, then they are 

transferred to the network starting from the left side (Input layer) to the right side of the 

𝐺𝑅𝑁𝑁 architecture (output layer) passing by the pattern layer. The input vector is multiplied 

by weights vector. This information has been recapitulated by the neuron in the patter layer, 

which includes bias (Fig 4.3). 

𝑦0 =   𝑤𝑖 × 𝑥𝑖 + 𝑏𝑛
𝑖=1           (4.1) 

The non-linearity of model is produced when it is proceeding through the transfer or 

activation function. 

𝑓 𝑥 =
1

1+𝑒−𝑥           (4.2) 

Then 

𝑦0 = 𝑓  𝑤𝑖 × 𝑥𝑖 + 𝑏𝑛
𝑖=1            (4.3) 

Where, y0= output, 𝑤𝑖= weight vector,𝑥𝑖  = scaled input vector, b=bias, f=transfer function 

and x= total sum of weighted inputs.  
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Figure 4. 3: Architecture of Multi-Layer Perceptron 

When the error signal is calculated, the method of model fitting terminates. The difference 

between output and target is employed to calculate the error signal in the model, which 

corresponds to the input variable. The corresponding equation for 𝑀𝐿𝑃 containing several 

neurons number is specified as shown in Eq (4.4): 

𝑦0 = 𝑓  𝑊𝑂𝑘𝑗 ( 𝑊𝐼𝑖𝑗 𝑥𝑖  
𝑛
𝑖=1 + 𝑏1) + 𝑏2         (5.4) 

Where, 𝑊𝐼𝑖𝑗 = weight of input layer, 𝑊𝑂𝑘𝑗 = weight of output layer, 𝑏1= bias in the inputlayer 

and 𝑏2 = bias in the output layer.  

There are no standard methods to determine the minimum and maximum number of neurons 

in the hidden layer (Sun et al., 2008). Few researchers have recommended the range of the 

optimal number of neurons in the hidden layer. In fact, the appropriate number of neurons 

ranges from2  𝑀  +  𝑁 to 2𝑀 + 1; where, 𝑁 and 𝑀are the number of output and input nodes, 

respectively (Fletcher and Goss, 1993). In the other side, (Voukantsis et al. 2011) 

demonstrated that the diverse number of neurons were proven in 𝑀𝐿𝑃 models by applying the 

following formulas; 
𝑀

2
− 2 up to 

𝑀

2
+ 2.  Furthermore, a study suggested and demonstrated 

that the number of neurons should not be greater than twice the number of inputs (Sun et al., 

2008). 

The transfer or activation function has an important participation in 𝐴𝑁𝑁 by generating a 

non-linear decision through non-linear blends of weighted input variables. The transfer 

function is able to transform the input signals into output signals. This transfer function 

reveals the non-linearity in the 𝑀𝐿𝑃 model, and then opposes it with the linear model. The 

Vehicle speed

Vehicle Acc/Decc
Maneuvers
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sigmoid function has been chosen as the transfer function in this study. All implementations 

and computations were performed using 𝑀𝐴𝑇𝐿𝐴𝐵.  

𝑓 𝑥 =  
1

1+𝑒−𝑥       (4.5) 

- General Regression Neural Network (𝑮𝑹𝑵𝑵) 

𝐺𝑅𝑁𝑁 requires few time-consuming as compare to the other iterative training networks. In 

fact, it selects an approximate function that connects the input and the output variables 

directly based on the training data.  In addition, their algorithms are characterized by a 

flexible network structure setting, high fault and robustness tolerance when updating values of 

the parameters (Kumar and Malik, 2016; Bendu et al., 2016)  

𝐺𝑅𝑁𝑁𝑠 are based on a standard statistical technique known as kernel regression (Specht, 

1991). 𝐺𝑅𝑁𝑁𝑠 comprise of four main layers including; output, summation, pattern and input 

layers from right to left (Fig.4.3). It is based on Equation (4.1) 

𝐸  
𝑦

𝑋
 =

 𝑦  𝑓   𝑥 ,𝑦 𝑑𝑦
∞∞
−∞

 𝑓   𝑥 ,𝑦 𝑑𝑦 ′
∞∞
−∞

          (4.6) 

Where, 𝒚 =the output of the predictor, 𝑥 = the input vector of the predictor, 𝐸  
𝒚

𝑿
 = the 

predicted value of output, 𝒙 = the input vector, 𝑓(𝑥, 𝑦)  =the joint probability density 

function of 𝑥 and 𝑦. 

In the present research, the 𝐺𝑅𝑁𝑁 architecture of exhaust 𝑃𝑁𝐶 was present in (Fig. 4.4) 

 

Figure 4. 4: Architecture of General Regression Neural Network (GRNN) 

Vehicle speed

Vehicle Acc/Decc

maneuvers
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4.1.3. Performance Indicators 

The comparison between 𝐺𝑅𝑁𝑁 and 𝑀𝐿𝑃 networks can be performed by specifying an 

objective function, which tends to minimize the total error between the measured (target) and 

predicted (calculated) 𝑃𝑁𝐶𝑠 values, such as, coefficient of determination (𝑅2), root-mean-

square error (𝑅𝑀𝑆𝐸) and mean absolute percentage error (𝑀𝐴𝑃𝐸) (Eqs. 4.4-4.6). The 

aforementioned parameters are applied measure of the gaps between measured 𝑃𝑁𝐶𝑠 by the 

Grimm and the predicted values by models. If a good model is predicted whenever 𝑅2is close 

to 1, and RMSE and MAPE are minimal.  

The selected performance indicators are:  

   𝑅2 = 1 −  
  𝑇𝑎𝑟𝑔𝑒𝑡 𝑖−𝑂𝑢𝑡𝑝𝑢𝑡 𝑖 

2𝑛
𝑖=1

 𝑇𝑎𝑟𝑔𝑒𝑡 𝑖
2𝑛

𝑖=1

                                 (4.7) 

  𝑅𝑀𝑆𝐸 =    
1

𝑛
  𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖 2𝑛

𝑖                                                                          (4.8)  

𝑀𝐴𝑃𝐸 =  
1

𝑛
  

(𝑇𝑎𝑟𝑔𝑒𝑡 𝑖−𝑂𝑢𝑡𝑝𝑢𝑡 𝑖

𝑇𝑎𝑟𝑔𝑒𝑡 𝑖
 𝑛

𝑡=1                                    (4.9) 

  

n = samples size, Target = measured𝑃𝑁𝐶𝑠 and Output= predicted value by 𝐺𝑅𝑁𝑁 or 𝑀𝐿𝑃 

model. 

4. 1.4. Results and discussion 

4. 1.4.1. 𝑨𝑵𝑵 Architecture 

The standard 𝐴𝑁𝑁𝑠 model architecture is constituted by output layer, one/more hidden layers 

and input layer passing from right to left (Khoshnevisan et al. 2014). In the present research, 

two-different architectures have been considered (𝐺𝑅𝑁𝑁 and  𝑀𝐿𝑃).𝐺𝑅𝑁𝑁 model was based 

on two-input variables including vehicle speed and vehicle acceleration/deceleration 

maneuvers, one hidden layer, a spread value equal to 0.7 and a single output node (particle 

number concentration) (2, 0.7, 1). 𝑀𝐿𝑃 was based on the same output and inputs of 𝐺𝑅𝑁𝑁as 

well as one hidden layer with three neurons. In order to ensure accurate comparison, the same 

hidden layer number (one hidden layer) has been chosen for the two-selected methods (𝑀𝐿𝑃 

and 𝐺𝑅𝑁𝑁).  
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4. 1.4.2. Efficiency of the predicted models 

The 70 sets of sampling were dividedrandomly as follows: 49 (about 70%) for training, 

11 (about 15 %) for validation and 10 (about 15 %) for testing data. The performance of the 

trained networks was evaluated, using several statistical parameters which are; 𝑅𝑀𝑆𝐸, 𝑅², 

and 𝑀𝐴𝑃𝐸. These parameters and coefficients are estimated using MATLAB® packageTable 

4.1. 

Table 4. 1: The performances of each model 

Models 𝑹𝑴𝑺𝑬 (𝒑/𝒄𝒎𝟑) 𝑹𝟐 𝑴𝑨𝑷𝑬 (%) 

𝑀𝐿𝑃 4.8×10
4
 0.80 20.4 

𝐺𝑅𝑁𝑁 3.9×10
3
 0.98 1.08 

 

The measured and predicted exhaust 𝑃𝑁𝐶𝑠 by 𝐺𝑅𝑁𝑁 and 𝑀𝐿𝑃 models are shown in Figure 

4.5. Comparison results demonstrated that 𝑀𝐿𝑃 model exhibits lower accuracy than 𝐺𝑅𝑁𝑁 

model as found by (Chen et al., 2018; Abdullah et al., 2019). This can also be clearly 

observed. 

 Testing and training results revealed that 𝐴𝑁𝑁 techniques performance is considered to be 

higher than that associated to regression models. The 𝐺𝑅𝑁𝑁 method was created to have the 

finest method for forecasting particle number exhaust emissions in urban road traffic. This 

result is coherent with other pertinent literature. Comparison results of 𝐺𝑅𝑁𝑁 with several 

other 𝐴𝑁𝑁𝑠 models showed that 𝐺𝑅𝑁𝑁 model provides accurate and efficient results 

(Antanasijevi´c et al., 2015). 𝑀𝐿𝑃𝑠 are among the best 𝐴𝑁𝑁𝑠, which reveals a noticeable 

performance, since the selected model could be specified by iterant settings calibration after 

adaptation in the model(Safari et al., 2016). 
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Figure 4. 5: Comparison between predicted PNCs by MLP and GRNN models 

The issue of overtraining is frequently reliable, because a wide number of biases and weights 

is induced from many iterations. However, 𝐺𝑅𝑁𝑁 model is a one pass learning network and 

does not require a repetitive strategy like 𝑀𝐿𝑃 models.Indeed, 𝐺𝑅𝑁𝑁 is able to solve 

overfitting issue to a wide margin. In conclusion, the 𝐺𝑅𝑁𝑁 model can be preferred over the 

𝑀𝐿𝑃 model for estimating 𝑃𝑁𝐶𝑠 induced from urban road exhaust emissions. 

Section 2: Modeling of particle non-exhaust emissions based 

on real-time measurements 

4. 2.1. Experimental protocol 

4. 2.1.1. Study area and data 

Measurements took place during July 2019 in urban area in the vicinity of Lyon (France) 

(Fig. 4.6). Lyon is France's second largest conurbation and third largest city; it is located in 

central eastern of France between Paris and Marseille, in the Auvergne-Rhône-Alpes Region.  
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Figure 4. 6: Field area (non-exhaust) 

The total mileage traveled for the present sampling day measurement was approximately 

64 𝑘𝑚. More details have been shown on sampling measurements, materials and 

methodology in chapter 3/section 2.  

4. 2.1.2. Methodology 

This study started by gathering the 𝑃𝑁𝐶𝑠 of non-exhaust emissions (resuspension, tire, road 

surface and brake wear) and instantaneous vehicle speed under continuous real-time 

measurements using the 𝐺𝑅𝐼𝑀𝑀 series 1.108 Aerosol Spectrometer and 𝐺𝑃𝑆 (747 𝑃𝑟𝑜), 

respectively. After that, the data has been filtered and analyzed, then synchronized to obtain a 

step of time 1 𝑚𝑖𝑛 for both vehicle speed and non-exhaust particle number concentrations.  

Subsequently, 𝐴𝑁𝑁𝑠 model (General Regression Neural Networks (𝐺𝑅𝑁𝑁)) and Multiple 

Linear Regression (𝑀𝐿𝑅) have been chosen to predict particle number concentration from 

real-time non-exhaust emissions in urban French area. In fact, the same input variables 

(vehicle speed and positive/negative vehicle acceleration maneuvers) have been selected for 

both 𝑀𝐿𝑅 and 𝐺𝑅𝑁𝑁. 𝑃𝑁𝐶𝑠 measured by the 𝐺𝑅𝐼𝑀𝑀 have been considered as the target for 

𝑀𝐿𝑅 and 𝐺𝑅𝑁𝑁 models. Finally, this study tends to compare 𝐺𝑅𝐼𝑀𝑀 output and 

𝐴𝑁𝑁𝑠 output. Then, the test was ended when the error reached its minimum. The flow chart 

methodology that was followed to model the continuous vehicle non-exhaust 𝑃𝑁𝐶𝑠 based on 

real experimental data is summarized in Figure 4.7.  
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Figure 4. 7: Flow chart Methodology for non-exhaust PNCs 

4. 2. 2. Multiple Linear Regression (𝑴𝑳𝑹) 

The regression analysis is the most commonly applied for predicting. The objective is to 

estimate a mathematical model that can be applied to predict the dependent variable based on 

the input variables (independent variables). The coefficient of correlation (𝑅2) is an indication 

to determine whether the information provides appropriate proof to demonstrate that the 

general models participate to the overall variance in data (Abdullah et al., 2016b). 

The error indicated by 𝜀is through to be frequently distributed with the mean 0 and change𝜎2 

(constant). Uniformly, 𝜀is through to be uncorrelated. In this study, it was agreed that 𝑀𝐿𝑅 

model has𝑘independent variables and that there are "𝑛 " observations (Juneng et al., 2011). 

The regression model can be observed as: 

𝑌𝑖 =  𝛽0 +  𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖With, i= 1,…, n. (4.10)  
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Where, 𝛽𝑖  = the model parameters to be predicted, 𝑥𝑖 =the independent variables and 𝜀= the 

stochastic error associated with the regression. 

4. 2.3. Performance Indicators 

- Multiple Linear Regression (𝑴𝑳𝑹) 

The major limit of the linear model is the multicollinearity between the independent variables. 

The main criterion for determining the validity of the results is the statistics parameter of  𝑅2. 

However, 𝑅2 rate is affected by the Perth data. Therefore, it is important to integrate other 

statistical parameters (Legates and McCabe, 1999). This is because, in the present research, 

we have added the 𝑅𝑀𝑆𝐸, 𝑀𝑆𝐸 and The Mean Absolute Deviation (𝑀𝐴𝐷) for more accuracy 

in modeling (Ahmat et al., 2015). 

𝑀𝑆𝐸 =  
1

𝑛
 (𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖)²𝑛

𝑖=1       (4.11) 

𝑀𝐴𝐷 =  
  𝑇𝑎𝑟𝑔𝑒𝑡 𝑖−𝑜𝑢𝑡𝑝𝑢𝑡 𝑖) 

𝑛
       (4.12) 

- General Regression Neural Networks – GRNN 

The 𝐺𝑅𝑁𝑁 has been also chosen to estimate the non-exhaust 𝑃𝑁𝐶 emissions as in section 1 

(estimating exhaust emissions). The same input variables were selected in the section of 

predicting exhaust emissions, which are vehicle speed and vehicle acceleration /deceleration 

maneuvers.  More details have been shown in section 1.  

4. 2.4. Results and discussion 

 Descriptive statistics  

The descriptive statistics showing the temporal variation of non-exhaust particle number 

concentration, which are less and  more than 1 𝜇𝑚Table 5.2.  

Table 4. 2: Descriptive statistics 

Models 𝑅2 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝑀𝐴𝐷 

𝑀𝐿𝑅1_ 𝑃𝑁𝐶𝑠 <  1 0.689 11128.5 3.6×10
3
 15.14 

𝐺𝑅𝑁𝑁1_ 𝑃𝑁𝐶𝑠 < 1 0.969 751 3.6×10
2
 0.425 

𝑀𝐿𝑅2_𝑃𝑁𝐶𝑠 > 1 0.701 1159.28 2.3×10
3
 6.98 

𝐺𝑅𝑁𝑁2_𝑃𝑁𝐶𝑠 > 1 0.978 19.13 5.08 0.02 
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- Multiple Linear Regression Model-𝑴𝑳𝑹 

The 𝑀𝐿𝑅 models were designed and the models ' summary is represented in Table 5.2.𝑀𝐿𝑅 

model is employed in this research to forecast the non-exhaust 𝑃𝑁𝐶𝑠. The model has been 

commonly employed in many researchers (Goyal et al., 2006; Fernandez et al., 2012; 

Abdullah et al., 2019). The considered independent variables are vehicle speed and vehicle 

acceleration/deceleration maneuvers. The training results of 𝑀𝐿𝑅 model in forecasting the 

non-exhaust 𝑃𝑁𝐶𝑠minor and more than 1in urban French area are presented in Equations 

4.13 and 4.14 and in Figure 4.8. 

𝑃𝑁𝐶𝑠<1 =  238.26𝑥1 + 106.74 𝑥2 + 6103.88     (4.13) 

𝑃𝑁𝐶𝑠>1 =  6.24𝑥1 + 4.74 𝑥2 + 156.54      (4.14) 

 

Figure 4. 8: Simulated and measured non-exhaust PNCs (p/cm3) using MLR model 
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Figure 4.8 illustrates the results of the testing phase of 𝑀𝐿𝑅 for both less and more than 1𝜇𝑚. 

For non-exhaust 𝑃𝑁𝐶𝑠 less than one, the results are as follows; 𝑅2  =  0.68, 𝑅𝑀𝑆𝐸 =  128.5, 

𝑀𝑆𝐸 =  3.6 × 103 and 𝑀𝐴𝐷 =  15.14. This model is less efficient than the 𝐺𝑅𝑁𝑁 model. 

Many assumptions should be taken into account to apply the 𝑀𝐿𝑅. This makes it very 

complicated to use. 𝑀𝐿𝑅 is not applied since these assumptions tend to engender 

sophisticated statistical calculations (Fig.4.8a). Consequently, it decreases the accuracy of the 

presented model. Similarly, for non-exhaust 𝑃𝑁𝐶𝑠 more than one, the model is less efficient 

than the 𝐺𝑅𝑁𝑁 model (Fig. 4.8b).  

- General Regression Neural Networks – 𝑮𝑹𝑵𝑵 

 

 

Figure 4. 9: Simulated and measured non-exhaust PNCs (𝒑/𝒄𝒎3
) using GRNN model 
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Testing and training results revealed that 𝐴𝑁𝑁 techniques performed more efficient to the 

𝑀𝐿𝑅 model. The 𝐺𝑅𝑁𝑁 method was produced to have the finest tool for forecasting particle 

number non-exhaust emissions in urban French road traffic area. This result is coherent with 

other pertinent literature. High similarity between measured 𝑃𝑁𝐶𝑠 (for both less and more 

than 1𝜇𝑚) by 𝐺𝑅𝐼𝑀𝑀 analyzer and 𝑃𝑁𝐶𝑠 predicted by 𝐺𝑅𝑁𝑁 (Fig. 4.9). Comparison results 

of 𝐺𝑅𝑁𝑁 with several other 𝐴𝑁𝑁𝑠 models showed that 𝐺𝑅𝑁𝑁 model provides accurate and 

efficient results (Antanasijevi´c et al., 2015; Zhang et al., 2020). 

4.3. Conclusion 

In the first section of this chapter, 𝐴𝑁𝑁𝑠 (𝑀𝐿𝑃 and 𝐺𝑅𝑁𝑁) are applied to predict vehicle 

exhaust 𝑃𝑁𝐶𝑠 from French urban road traffic based on real-time measurements. The 

performance of observation models was evaluated and compared by statistical indexes, 

namely 𝑅𝑀𝑆𝐸, 𝑀𝐴𝑃𝐸 and 𝑅2. The performance of the 𝐺𝑅𝑁𝑁 model is quite higher 

compared to that of 𝑀𝐿𝑃 model. Furthermore, results proved that 𝐺𝑅𝑁𝑁𝑠 characterized by 

significant potential to predict the exhaust 𝑃𝑁𝐶𝑠from urban road traffic. Furthermore, 

forecasting the non-exhaust 𝑃𝑁𝐶𝑠 could increase and improve the public health. In section 2, 

𝐺𝑅𝑁𝑁 and 𝑀𝐿𝑅models were applied to forecast the non-exhaust 𝑃𝑁𝐶𝑠 in French urban road 

traffic based on real-time measurement by 𝐺𝑅𝐼𝑀𝑀 analyzer. The overall results suggested 

that the 𝐺𝑅𝑁𝑁 models have higher accuracy and efficiency than 𝑀𝐿𝑃 and 𝑀𝐿𝑅 models in 

predicting non-exhaust 𝑃𝑁𝐶𝑠 in French urban road traffic. The analysis of 𝐺𝑅𝑁𝑁, 𝑀𝐿𝑅 and 

𝑀𝐿𝑃 models justified that vehicle speed and vehicle acceleration/deceleration maneuvers 

have an important impact on 𝑃𝑁𝐶𝑠.This is because the statistical models need more attention, 

since they are powerful tools to evaluate the particle exhaust emissions engendered from 

urban road traffic giving new insights into consideration of vehicle technologies‘ conception 

and ensure a sustainable mobility and environment.  
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Conclusions and Recommendations for Further Research 

 
 

 Conclusions 

This dissertation introduces the measurements of continuous 𝑃𝑁𝐶𝑠 and 𝑁𝐸𝑃𝑠 under real 

traffic conditions and the ambient nanoparticles in urban area. The conclusions of this 

research can be divided into three categories: 

 

- The influence of urban road traffic on nanoparticles:  Roadside 

measurements 

 

This study assesses the continuous ambient 𝑃𝑁𝐶𝑠 in urban road traffic, taken into account 

several parameters, which are traffic volume, wind speed and direction, height above the road 

surface and distance from the source. The results substantiate that: 

 

- The ambient 𝑃𝑁𝐶𝑠 are inversely proportional to the distance between road traffic and 

sampling site. 

 

- 𝑃𝑁𝐶𝑠 are very high in the vicinity of the traffic zone, predominantly during rush hour since 

the sampling site connects the city center with a business activity area. 

 

- 𝑃𝑁𝐶 increases significantly with an increase in height of less than 2.82 𝑚 above the ground. 

With heights 2.03 𝑚 and 2.82 𝑚 above the ground, the urban study area is characterized by 

high nanoparticle number with channel size diameters in nucleation mode (10.75 𝑛𝑚). 

 

-The average 𝑃𝑁𝐷 values revealed typical bimodal distributions for each wind speed and 

direction, with a strong nucleation mode peak at ~10.75 𝑛𝑚 and an Aitken mode peak 

between 22.07 and 52.33 𝑛𝑚. 
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- Continuous real-world measurements of exhaust and non-exhaust vehicle 

emissions over different traffic areas 

 

This study measures and analysis the continuous real-world measurements of exhaust and 

non-exhaust emissions in different road traffic areas. The results reveal that: 

- Similar pattern (exponential trends) in particle number concentrations over the four road 

types for both particle diameters both smaller and greater than 1 𝑚. 

 

- The highest average exhaust 𝑃𝑁𝐶𝑠 were recorded on the motorway, at 6.7 × 106, where the 

highest value was found at 0.35𝑚. 

 

- The particle counts exceeded WHO's permissible limit for both 𝑃𝑀2.5 and 𝑃𝑀10, i.e. at 

25 𝑔/𝑚3 and 50 𝑔/𝑚3. 

- Particle mass is heavily influenced by stop-and-go traffic 

 

- The 𝑁𝐸𝑃 concentrations in motorway are higher as compare to particles induced in rural 

and urban areas, due to high speed, pavement materials and abrupt vehicle acceleration and 

deceleration maneuvers.  

 

-The 𝑁𝐸𝑃 concentrations were characterized by a bimodal distribution at coarse modes with 

0.35 and 1.3µ𝑚 ranges respectively within the three selected measurement days. 

 

- Vehicle speed, sharp positive and negative acceleration maneuvers have a pronounced effect 

on 𝑁𝐸𝑃 concentrations. 

 

- A linear relationship was found between 𝑃𝑀 (𝑃𝑀2.5, 𝑃𝑀10 and 𝑃𝑀2.5/𝑃𝑀10) ratio and 

the driving speed with high coefficient of determination 𝑅2.
 

 

-The𝑁𝐸𝑃 concentrations can vary with driving style and traffic conditions. 

 

 Recommendations for Further Research 
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The following areas should be taken into account to extend the present research work on 

vehicle exhaust and non-exhaust emissions.  

- Future research should include the physicochemical analysis in order to distinguish between 

each source of 𝑁𝐸𝑃 (resuspension, brake, tire and road surface wear). 

- Focusing on roadside and board devices able to warning drivers and identifying situations 

prone to 𝑁𝐸𝑃 emissions to adjust their speed.   

- Focusing more on the technological aspects of vehicles systems for both exhaust and non-

exhaust vehicles including 

- Development of sensors allowing sensing nanoparticles with size diameter <23 𝑛𝑚 

that are emitted from braking system before their dispersion in atmosphere; 

- Implementation of ultrafine particle aspirator for the brakes; 

- Identification of the chemical composition of particles induced from friction between 

pad and brake disc; 

- Integration of a particle filter with a size diameter <7 𝑛𝑚 since exhaust particles are 

very ultrafine. 

In addition to technological vehicles, it is worthy to implement severe regulations with very 

expensive penalties.  Moreover, it is important to put in place an efficient traffic management 

system like prohibit polluting vehicles from entering to the city center. 

- investigating in a sustainable road with optimum pavement materials and reducing the 

intervention works of rehabilitation and maintenance or applied in an optimum period. 

Moreover, it is worthy to ensure an efficient drainage system in order to avoid the long-time 

exposure of pedestrians and cyclists to nanoparticles especially in the developing countries. In 

the same direction, the impact of nanoparticles on geochemical cycle is one of the 

environment challenging issue that may require more attention by researchers. In fact, the 

interaction of these nanoparticles when diffused with the soil and its geochemical interaction 

with the soil matrix as a receptor will constitute a future research axis on which we aim to 

investigate experimentally with electrochemical techniques for nanoparticles detection and 

theoretically with the derivation of the chemical reactions series that may take place. 

 



110 

 

References 

 
Abdullah S, Ismail M, Ahmed A N, Abdullah A M., 2019. Forecasting particulate 

matter concentration using linear and non-linear approaches for air quality    decision 

support. Atmosphere 10(11), 667. 

Abdullah, S., Ismail, M., Fong, S.Y., Ahmed, A.N., 2016a. Neural network fitting 

using Lavenberq Marquardtalgorithm for PM10 concentration forecasting in Kuala 

Terengganu. J. Telecommun. Electron. Comput. Eng. 8, 27–31. 

Abdullah, S., Ismail, M., Fong, S.Y., Ahmed, A.N., 2016b. Evaluation for long term 

PM10 forecasting using multilinear regression (MLR) and principal component regression 

(PCR) models. Environ. Asia. 9, 101–110. 

Ahmat, H.,Yahaya, A.S., Ramli, N.A., 2015. The Malaysia PM10 analysis using 

extreme value. J. Eng. Sci. Technol.10, 1560–1574. 

Agudelo-Castañeda, D.M., & Teixeira, E.C., 2014. Seasonal changes, identification 

and source apportionment of PAH in PM 1.0. Atmos. Envionm, 96, 186–200.  

Air Quality Expert Group (AQEG). 2019. Non-Exhaust Emissions from Road Traffic; 

Defra:385 London, UK. 

Akyüz, M., Çabuk, H., 2009. Meteorological variations of PM2.5/PM10 

concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric 

environment of Zonguldak, Turkey. Journal of Hazardous Materials 170, 13-21. 

Alam, K., Blaschke, T., Madl, P., Mukhtar, A., Hussain, M., Trautmann, T., Rahman, 

S., 2011. Aerosol size distribution and mass concentration measurements in various cities of 

Pakistan. J. Environ. Monit. 13(7), 1944-1952. 

Al-Dabbousa, A. N., Kumar, P., 2014. The influence of roadside vegetation barriers on 

air borne nanoparticles and pedestrians exposure under varying wind conditions. Atmospheric 

Environment 90, 113- 123. 

Aldrin, M., Haff, I.H., 2005. Generalized additive modelling of air pollution, traffic 

volume and meteorology. Atmospheric Environment 39, 2145-2155.  

Alp, M., Cigizoglu, K., 2007. Suspended sediment load simulation by two artificial 

neural network methods usinghydrometeorological data. Environ. Model. Softw 22, 2–13. 



111 

 

Amaral, S. S., De Carvalho, J. A., Costa, M. A. M., Pinheiro, C., 2015. An overview 

of particulate matter measurement instruments. Atmosphere 6(9), 1327-134. 

Amato, F., Cassee, F.R., Van Der Gon, H.A.D., Gehrig, R., Gustafsson, M., Hafner, 

W., Harrison, R.M., Jozwicka, M., Kelly, F.J., Moreno, T., 2014. Urban air quality: The 

challenge of traffic non-exhaust emissions. J. Hazard. Mater. 275, 31–36 

Andersson, J., Giechaskiel, B., Muñoz-Bueno, R., Sandbach, E., & Dilara, P. (2007). 

Particle Measurement Programme (PMP) Light-duty Inter-laboratory Correlation Exercise 

(ILCE_LD) Final Report. Luxembourg: Office for Official Publications of the European 

Communities; 163p. Report No. EUR 22775 EN. 

Antonopoulos, V. Z., AntonopoulosA. V., 2017.  Daily reference evapotranspiration 

estimates by artificial neural networks technique and empirical equations using limited input 

climate variables. Comput. Electron. Agric 132, 86–96.  

Antanasijevi´c D, Pocajt V, Risti´c M, Peri´c-Gruji´c A., 2015. Modeling of energy 

consumption and related GHG (greenhouse gas) intensity and emissions in Europe using 

general regression neural networks. Energy 84, 816–824 

Araujo, J.A., Barajas, B., Kleinman, M., Wang, X., Bennett, B.J., Gong, K.W., Navab, 

M., Harkema, J., Sioutas, C., Lusis, A.J., Nel, A.E., 2008. Ambient particulate pollutants in 

the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. 

Res.102(5), 589-596.  

Arjun, K.S., Aneesh, K., 2015.  Modelling studies by application of artificial neural 

network using Matlab. J. Eng.Sci. Technol. 10, 1477–1486. 

Arnold, F., Pirjola, L., Rankko, T., Abdul-khalek, I., Kittelson, D., Brear, F., 1999. 

The influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution 

Measurements.International Congress and Exposition Detroit, Michigan, 1-4 March, 01-1142. 

Baensch-Baltruschat, B., Kocher, B., Stock, F., Reifferscheid, G., 2020. Tyre and road 

wear particles (TRWP)—A review of generation, properties, emissions, human health risk, 

ecotoxicity, and fate in the environment. Sci. Total Environ. 733,137823. 

Banerjee, T., & Christian, R. A., 2019. Effect of operating conditions and speed on 

nanoparticle emission from diesel and gasoline driven light duty vehicles. Atmospheric 

Pollution Research, 10, 1852-1865. 



112 

 

Barrios, C.C., Domínguez-Sáez, A., Rubio, J.R., Pujadas, M., 2012. Factors 

influencing the number distribution and size of the particles emitted from a modern diesel 

vehicle in real urban traffic. Atmospheric Environment 56, 16-25. 

Bealey, W. J., McDonald, A. G., Nemitz, E., Donovan, R., Dragosits, U., Duffy, T. R., 

Fowler, D., 2007. Estimating the reduction of urban PM10 concentrations by trees within an 

environmental information system for planners. J. Environ. Manage. 85(1), 44-58. 

Beji, A., Deboudt, K., Khardi, S., Muresan, B., Flament, P., Fourmentin, M., Lumière, 

L., 2020. Non-exhaust particle emissions under various driving conditions: Implications for 

sustainable mobility. Transp. Res. D Transp. Environ.81, 102290. 

Belkacem, I., Khardi, S., Helali, A., Slimi, K., Serindat, S., 2020. The influence of 

urban road traffic on nanoparticles: Roadside measurements. Atmos. Environ. 242, 117786.  

Belkacem I, Helali A, Khardi S, Chrouda A, Slimi K., 2021. Road traffic nanoparticles 

characteristics: sustainable environment and mobility. Geosci. Front, 

DOI: 10.1016/j.gsf.2021.101196. 

Benedetti M, Cesarotti V, Introna V, Serranti J (2016) Energy consumption control 

automation using Artificial Neural Networks and adaptive algorithms: proposal of a new 

methodology and case study. J. Appl. Energy, 165, 60–71.  

Bendu, H., Deepak, B., Murugan, S., 2016. Application of GRNN for the prediction of 

performance and exhaust emissions in HCCI engine using ethanol. Energy Convers. Manag. 

122, 165–173 

Bernstein, J.A., Alexis, N., Bacchus, H., Bernstein, I.L., Fritz, P., Horner, E., Li, N., 

Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A., Tarlo, S.M., 

2008. The health effects of non-industrial indoor air pollution.  Journal of Allergy and 

Clinical Immunology, 121, 585–591. 

Bergmann, M., Kirchner, U., Vogt, R. Benter, T., 2009.On-road and laboratory 

investigation of low-PM emissions of a modern diesel particulate filter equipped diesel 

passenger car. Atmos. Environ. 43(11), 1908-1916. 

Bischof, O., 2015. Recent developments in the measurement of low particulate 

emissions from mobile sources: a review of particle number legislations. Emiss. control sci. 

technol. 203-2212.  

http://dx.doi.org/10.1016/j.gsf.2021.101196


113 

 

Bilal, M., Nichol, J. E., Nazeer, M., Shi, Y., Wang, L., Kumar, K. R., Ho, H.Ch., 

Mazhar, U., Bleiweiss, M.P., Qiu, Z., Khedher, K. M., Lolli, S., 2019. Characteristics of Fine 

Particulate Matter (PM2. 5) over Urban, Suburban, and Rural Areas of Hong Kong. 

Atmosphere 10 (9), 496.  

Boulter PG., 2005. A review of emission factors and models for road vehicle non-

exhaust particulate matter. TRL report PPR065. TRL Limited, Wokingham. 

Brown, D. M., Stone, V., Findlay, P., MacNee, W., Donaldson, K., 2000. Increased 

inflammation and intracellular calcium caused by ultrafine carbon black is independent of 

transition metals or other soluble components. Occup. Environ. Med. 57, 685 –691.  

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., Donaldson, K., 2001. Size-

dependent pro-inflammatory effects of ultrafine polystyrene particles: a role for surface area 

and oxidative stress in the enhanced activity of ultra-fines. Toxicol. Appl. Pharmacol. 175, 

191– 199.  

Brugge, D., Durant, J.L., Rioux, C., 2007. Near-highway pollutants in motor vehicle 

exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. Environ. 

Health. 6, 23.  

Bukowiecki, N., Dommen, J., Prévôt, A. S. H., Weingartner, E., Baltensperger, U., 

2003. Fine and ultrafine particles in the Zürich (Switzerland) area measured with a mobile 

laboratory: an assessment of the seasonal and regional variation throughout a 

year. Atmos. chem. phys. 3(5), 1477-1494. 

Cabaneros, S.M.S., Calautit, J.K.S., Hughes, B.R., 2017. Hybrid artificial neural 

networkmodels for effective prediction and mitigation of urban roadside NO2 

pollution.Energy Procedia 142, 3524–3530.  

Cabaneros, S.M.S., Calautit, J. K., Hughes, B. R., 2019. A review of artificial neural 

network models for ambient air pollution prediction. Environ. Model. Softw. 119, 285-304. 

Caulfield, B., Brazil, W., Ni Fitzgerald, K., Morton, C., 2014. Measuring the success 

of reducing emissions using an on-board eco-driving feedback tool. Transp. Res. D. Transp. 

Environ. 32, 253–262. 

Carpentieri, M., Kumar, P., 2011. Ground-fixed and on-board measurements of 

nanoparticles in the wake of a moving vehicle. Atmos. Environ.45(32), 5837-5852. 



114 

 

Casati, R., Scheer, V., Vogt, R., Benter, T., 2007. Measurement of nucleation and soot 

mode particle emission from a diesel passenger car in real world and laboratory in situ 

dilution. Atmos. Environ.41, 2125-2135.  

Cazier, F., Genevray, P., Dewaele, D., Nouali, H., Verdin, A., Ledoux, F., et al. 

(2016). Characterisation and seasonal variations of particles in the atmosphere of rural, urban 

and industrial areas: organic compounds. Journal of Environmental Sciences, 44, 45-56. 

Chalupa, D.C., Marrow, P.E., Oberdorster, G., Utell, M.J., Frampton, M.W., 2004. 

Ultrafine particle deposition in subjects with asthma.  Environ. Health. Perspect. 112, 879-

882. 

Chang, M.E., Cardelino, C., 2000. Application of the Urban Airshed Model to 

forecastingnext-day peak ozone concentrations in Atlanta, Georgia. J. Air Waste Manag. 

Assoc.50 (11), 2010–2024.  

Charron, A, Harrison, R.M., 2003. Primary particle formation from vehicle emissions 

during exhaust dilution in the roadside atmosphere. Atmos. Environ.37, 4109-4119. 

Charron, A., Polo-Rehn, L., Besombes, J.L., Golly, B., Buisson, Ch., Chanut, H., 

2019. Identification and quantification of particulate tracers of exhaust and non-exhaust 

vehicle emissions. Atmospheric Chemistry and Physics, 19, 5187–5207.   

 

Chen, G., Li, S., Zhang, Y., Zhang, W., Li, D., Wei, X., He, Y., Bell, M.L., Williams, 

G., Marks, G.B., Jalaludin, B., Abramson, M.J., Guo, D.Y., 2017. Effects of ambient PM1 air 

pollution on daily emergency hospital visits in China: an epidemiological study. The Lancet 

Planetary Health, 1(6), 221-229. 

Chen, L., Liang, Z., Zhang, X., Shuai, S., 2017. Characterizing particulate matter 

emissionsfrom GDI and PFI vehicles under transient and cold start conditions. Fuel, 189, 

131–140. 

Cheng, Y.H., 2008. Comparison of the TSI Model 8520 and Grimm Series 1.108 

portable aerosol instruments used to monitor particulate matter in an iron foundry. Journalof 

Occupational and Environmental Hygiene, 5, 157–168. 

Che, H., Zhang, X., Li, Y., Zhou, Z., Qu, J., Hao, X., 2009. Haze trends over the 

capitalcities of 31 provinces in China, 1981-2005. Theor. Appl. Climatol. 97, 235-242. 



115 

 

Cheng, M.T., Tsai, Y.I., 2000. Characterization of visibility and atmospheric aerosols 

in urban, suburban, and remote areas. Sci. Total Environ. 263, 101-114. 

Choi, W., Paulson, S. E., 2016. Closing the ultrafine particle number concentration 

budget at road-to-ambient scale: Implications for particle dynamics. Aerosol. Sci. Tech. 50(5), 

448-461. 

Choi, W., Winer, A. M., Paulson, S. E., 2014. Factors Controlling Pollutant Plume 

Length Downwind of Major Roadways in Nocturnal Surface Inversions. Atmospheric 

Chemistry and Physics14, 6925–6940. 

Chuang, M.T., Zhang, Y., Kang, D., 2011. Application of WRF/Chem-MADRID for 

real time 

air quality forecasting over the South eastern United States. Atmos. Environ. 45 (34), 

6241–6250.  

Carnevale, C., Finzi, G., Pederzoli, A., Turini, E., 2016. Volta, M. Lazy learning-

based surrogate models for air quality planning. Env. Model. Softw. 83, 47–57. 

Cazier, F., Genevray, P., Dewaele, D., Nouali, H., Verdin, A., Ledoux, F., et al. 

(2016). Characterisation and seasonal variations of particles in the atmosphere of rural, urban 

and industrial areas: organic compounds. Journal of Environmental Sciences, 44, 45-56. 

Charron, A., Polo-Rehn, L., Besombes, J.L., Golly, B., Buisson, Ch., Chanut, H., 

2019. Identification and quantification of particulate tracers of exhaust and non-exhaust 

vehicle emissions. Atmospheric Chemistry and Physics, 19, 5187–5207.   

Chen, G., Li, S., Zhang, Y., Zhang, W., Li, D., Wei, X., He, Y., Bell, M.L., Williams, 

G., Marks, G.B., Jalaludin, B., Abramson, M.J., Guo, D.Y., 2017. Effects of ambient PM1 air 

pollution on daily emergency hospital visits in China: an epidemiological study. The Lancet 

Planetary Health, 1(6), 221-229. 

Chen, L., Liang, Z., Zhang, X., Shuai, S., 2017. Characterizing particulate matter 

emissionsfrom GDI and PFI vehicles under transient and cold start conditions. Fuel, 189, 

131–140. 

Chen Z, Ye X, Huang P., 2018. Estimating carbon dioxide (CO2) emissions from 

reservoirs using artificial neural networks. Water 10(1), 26. 



116 

 

Cheng, Y.H., 2008. Comparison of the TSI Model 8520 and Grimm Series 1.108 

portable aerosol instruments used to monitor particulate matter in an iron foundry. Journal of 

Occupational and Environmental Hygiene, 5, 157–168. 

Condurat, M., Nicuţă, A. M., Andrei, R., 2017. Environmental impact of road 

transport traffic. A case study for county of Iaşi road network. Procedia. Eng. 181, 123-130. 

Condurat, M., Patterson, J., 2016. Welsh and Romanian policies for transition towards 

low carbon mobility. Cardiff, UK, February 2016. Proceedings of the international conference 

‗Smart energy Regions‘. pp. 59-70, ISBN: 978-1-899895-32-6.  

Colls, J., 2001. second ed. Air Pollution, vol 29 Spon Press, West 35th Street, New 

York,NY 10001. 

Coudray, N., Dieterlen, A., Roth, E., Trouvé, G., 2009. Density measurement of fine 

aerosol fractions from wood combustion sources using ELPI distributions and image 

processing techniques. Fuel 88, 947–954. 

Costa, M.A.M., Carvalho, J.A., Neto, T.G.S., Anselmo, E., Lima, B.A., Kura, L.T.U., 

Santos, J.C., 2012. Real-time sampling of particulate matter smaller than 2.5 μm from 

Amazon Forest biomass combustion. Atmos. Environ. 54, 480–489. 

Committee on the Medical Effects of Air Pollutants (COMEAP). Statement on the 

Evidence for Health Effects Associated with Exposure to Non-Exhaust Particulate Matter 

from Road Transport; Committee on the Medical Effects of Air Pollutants: Chilton, UK, 

2020. Eionet. 

Dahl, A., Gharibi, A., Swietlicki, E., Gudmundsson, A., Bohgard, M., Ljungman, A., 

Blomqvist, G., Gustafsson, M., 2006. Traffic-generated emissions of ultrafine particles from 

pavement–tire interface. Atmos. Environ. 40, 1314–1323. 

Dall'Osto, M., Beddows, D.C.S., Pey, J., Rodriguez, S., Alastuey, A., Harrison, R.M., 

Querol, X., 2012. Urban aerosol size distributions over the Mediterranean city of 

Barcelona,NE Spain. Atmospheric Chemistry and Physics 12, 10693–10707. 

Delfino, R. J., Sioutas, C., Malik, S., 2005. Potential role of ultrafine particles in 

associations between airborne particle mass and cardiovascular health.  

Environ. Health. Perspect.113(8), 934-946. 



117 

 

DELPHI. 2017. Worldwide Emissions Standards—passenger cars and light duty 

vehicles—2017-2018. Available at: http://www.delphi.com/about/emissions_standards. 

Deshmukh, D.K., Deb, M.K., Mkoma, S.L., 2013. Size distribution and seasonal 

variation of size-segregated particulate matter in the ambient air of Raipur city, India.  Air. 

Qual. Atmos. Health. 6, 259–276. 

Dominici, F., Greenstone, M., Sunstein, C.R., 2014. Particulate matter matters. 

Science, 344, 257–259. 

Donaldson, K., Tran, C. L., 2002. Inflammation caused by particles and fibers. Inhal. 

Toxicol. 14, 5–27.   

Donaldson, K., Stone, V., Gilmour, P. S., Brown, D. M., MacNee, W., 2000. Ultrafine 

particles: mechanisms of lung injury.  Philos. Trans. R. Soc. A. 358, 2741–2749.  

Donaldson, K., Tran, L., Albert Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., 

MacNee, W., Stone, V., 2005. Combustion-derived nanoparticles: a review of their toxicology 

following inhalation exposure. Part. Fibre. Toxicol. 5-6, 553-560. 

Donaldson, K., Stone, V., 2007.Toxicological properties of nanoparticles and 

nanotubes. Issues in environmental science and technology. Nanotechnology 24, 81–96.  

Durbin, T., Johnson, K., Cocker, D., Miller, J., Maldonado, H., Shah, A., Ensfield, C., 

Weaver, C., Akard, M., Harvey, N., Symon, J., Lanni, T., Bachalo, W., Payne, G., 

Smallwood, G., Linke, M., 2007. Evaluation and comparison of portable emissions 

measurement systems and federal reference methods for emissions from a back-up generator 

and a diesel truck operated on a chassis dynamometer. Environ. Sci. Technol. 41, 6199–6204. 

Duffin, R., Tran, C. L., Clouter, A., Brown, D., MacNee, W., Stone, V., Donaldson, 

K., 2002. The importance of surface area and specific reactivity in the acute pulmonary 

inflammatory response to particles.  Ann. Occup. Hyg.  46, 242–245. 

Easter, R.C., Peters, L.K., 1994. Binary homogeneous nucleation: temperature and 

relative humidity fluctuations, nonlinearity, and aspects of new particle production in the 

atmosphere. J. Appl. Meteorol. Clim. 33 (7), 775–784. 

Edwards, R., Smith, K. R., Kirby, B., Allen, T., Litton, C. D., Hering, S., 2006. An 

inexpensive dual-chamber particle monitor: laboratory characterizationJ. Air. Waste. Manag. 

Assoc. 56 (6), 789-799. 

http://www.delphi.com/about/emissions_standards


118 

 

Elsässer, M., Crippa, M., Orasche, J., Decarlo, P.F., Oster, M., Pitz, M., Cyrys, J., 

Gustafson, T.L., Pettersson, J.B.C., Zimmermann, R., 2012. Organic molecular markers and 

signature from wood combustion particles in winter ambient aerosols : Aerosol mass 

spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. 

Atmos. Chem. Phys. 6113–6128. 

European Environment Agency. 2019. Air quality in Europe - report 10 – 75. 

Available at: https://www.eea.europa.eu/publications/air-quality-in-europe-2019.  

European Environment Agency. 2015. The European environment — state and 

outlook 2015 [WWW Document]. European Environment Agency. URL  

https://www.eea.europa.eu/soer. (Accessed 5.14.19). 

E.U., 2008. Commission Regulation (EC) No 692/2008. Official Journal of the 

European Union 136.  

European Environment Agency (EEA)., 2014. Air Quality in Europe-

2014.Copenhagen: EEA Report No, 5 /2014. EMEP/EEA (2013). Air Pollutant Emission 

Inventory Guidebook. Copenhagen: European Monitoring and Evaluation 

Programme/European Environment Agency, 2013. 

European Environment Agency (EEA)., 2018. Air quality in Europe - 2018 report.  

Environmental Protection Agency, 2017. Particulate Matter (PM) Pollution: Health 

andEnvironmental Effects of Particulate Matter (PM) Health Effects. 

European Environment Agency, 2015. The European environment — state and 

outlook 2019[WWW Document]. 

Feng, XL., Shao, LY., Xi, CX., Jones, TP., Zhang, DZ., BéruBé, KA., 2020, Particle-

induced oxidative damage by indoor size-segregated particulate matter from coal-burning 

homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere 

256,127058. 

Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J., 2015. Artificial neural networks 

forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet 

transformation. Atmos. Environ. 107, 118–128. 

https://scholar.google.com/citations?user=e2a0wjEAAAAJ&hl=fr&oi=sra
https://www.eea.europa.eu/publications/air-quality-in-europe-2019
https://www.eea.europa.eu/soer


119 

 

Fernandez, F.G., Palacios, P., Esteban, L.G., Garcia-Iruela, A., Rodrigo, B.G., 

Menasalvas, E., 2012. Prediction of MOR and MOE of structural plywood board using an 

artificial neural network and comparison with a multivariate regression model. Compos. Part 

B Eng. 43, 3528-3533. 

Filonchyk, M., Yan, H., Yang, S., Hurynovich, V., 2016. A study of PM 2.5 and PM 

10 concentrations in the atmosphere of large cities in Gansu Province, China, in summer 

period.  J. Earth. Syst. Sci. 125(6), 1175-1187. 

Fletcher, D., Goss, E., 1993. Forecasting with neural networks: An application using 

bankruptcy data. Inf. Manag. 24, 159–167. 

Foitzik, M. J., Unrau, H. J., Gauterin, F., Dörnhöfer, J., Koch, T., 2018. Investigation 

ofultrafine particulate matter emission of rubber tires. Wear 394-395, 87-95. 

Furger, M., Rai, P., Slowik, J.G., Cao, J., Visser, S., Baltensperger, U., Prévôt, A.S., 

2020.Automated alternating sampling of PM10 and PM2.5 with an online XRF 

spectrometer.Atmos. Environ. 5, 100065. 

Garg, B.D., Cadle, S.H.,   Mulawa, P.A., Groblicki, P.J., 2000. Brake wear particulate 

matter emissions. Environ. Sci. Technol.  34, 4463-4469.  

Gass, S.I., 1983. Feature article-decision-aiding models: validation, assessment, and 

related issues for policy analysis.  

Geller, M. D., Sardar, S. B., Phuleria, H., Fine, P. M., Sioutas, C., 2005. 

Measurements of particle number and mass concentrations and size distributions in a tunnel 

environment. Environ. Sci. Technol.  39(22), 8653-8663. 

Giechaskiel, B., 2018. Real Driving Emissions (RDE) Particle Number (PN) Portable 

Measurement Systems (PEMS) Calibration. Publications Office of the European Union. 

Giechaskiel, B., Bonnel, P., Perujo, A., Dilara, P., 2019a. Solid particle number (SPN) 

portable emissions measurement systems (PEMS) in the European legislation: Review.  Int. J. 

Environ. Res. Public. Health. 16, 4819.  

Giechaskiel, B., Lahde, T., Suarez-Bertoa, R., Clairotte, M., Grigoratos, T., Zardini, 

A., Perujo, A., Martini, G., 2018. Particle number measurements in the European legislation 

and future JRC activities. Combustion engines 174 (3), 3-16.  



120 

 

Giechaskiel, B., Mamakos, A., Andersson, J., Dilara, P., Martini, G., Schindler, W., 

Bergmann, A., 2012. Measurement of automotive nonvolatile particle number emissions 

within the European legislative framework: a review. Aerosol. Sci. Tech.46, 719-749. 

Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., 

Bergmann, A., Schindler, W., 2014a. Review of motor vehicle particulate emissions sampling 

and measurement: from smoke and filter mass to particle number. J. Aerosol. Sci.67, 48-86. 

Giechaskiel, B., Manfredi, U., Martini, G., 2014b. Engine exhaust solid sub-23 nm 

particles. I. literature survey. SAE. Int. J. Fuels. Lubr. 7, 950-964. 

Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., 

Bergmann, A., Schindler, W., 2014c. Review of motor vehicle particulate emissions sampling 

and measurement: From smoke and filter mass to particle number. J. Aerosol. Sci.67, 48–86. 

Giechaskiel, B., Riccobono, F., Vlachos, T., Mendoza-Villafuerte, P., Suarez-Bertoa, 

R., Fontaras, G., Bonnel, P., Weiss, M., 2015. Vehicle Emission Factors of Solid 

Nanoparticles in the Laboratory and on the Road Using Portable Emission Measurement 

Systems (PEMS). Front. Environ. Sci. 3, 82.  

Giechaskiel, B., Munoz-Bueno, R., Rubino, L., Manfredi, U., Dilara, P., DeSanti, G., 

2007. Particle measurement programme (PMP): particle size and number emissions before, 

during and after regeneration events of a euro 4 DPF equipped light-duty diesel vehicle. SAE 

Technical Paper. 2007- 01-1944. 

Giechaskiel, B., Zardini, A.A., Clairotte, M., 2019b. Exhaust gas condensation during 

engine cold start and application of the dry-wet correction factor. Appl. Sci.9, 2263.  

Giugliano, M., Lonati, G., Butelli, P., Romele, L., Tardivo, R., Grosso, M., 2005. Fine 

particulate (PM2. 5–PM1) at urban sites with different traffic exposure. Atmos. Environ. 

39(13), 2421-2431. 

Gouriou, F., Morin, J. P., Weill, M. E., 2004. On-road measurements of particle 

number concentrations and size distributions in urban and tunnel environments. Atmos. 

Environ. 38 (18), 2831-2840. 

Goel, A., Kumar, P., 2016. Vertical and horizontal variability in airborne nanoparticles 

and their exposure around signalized traffic intersections.  Environ. Pollut. 214, 54-69. 



121 

 

Gomišček, B., Hauck, H., Stopper, S., Preining, O., 2004. Spatial and temporal 

variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP—

project. Atmos. Environ. 38(24), 3917-3934. 

Goyal, P., Chan, A.T., Jaiswal, N., 2006. Statistical models for the prediction 

ofrespirable suspended particulate matter in urban cities. Atmos. Environ. 40, 2068-2077. 

Geller, M. D., Sardar, S. B., Phuleria, H., Fine, P. M., Sioutas, C., 2005. 

Measurements of particle number and mass concentrations and size distributions in a tunnel 

environment. Environmental Science &Technology, 39, 8653-8663. 

Giechaskiel, B., Riccobono, F., Vlachos, T., Mendoza-Villafuerte, P., Suarez-Bertoa, 

R., Fontaras, G., Bonnel, P., Weiss, M., 2015. Vehicle Emission Factors of Solid 

Nanoparticles in the Laboratory and on the Road Using Portable Emission Measurement 

Systems (PEMS). Frontiers in Environmental Science, 3, 82. 

Giechaskiel, B., Leonidas Ntziachristos, L., Samaras, Z., Casati, G.R., Scheer, V., 

Vogt, R., 2007. Effect of Speed and Speed-Transition on the Formation of Nucleation Mode 

Particles from a Light Duty Diesel Vehicle. SAE paper number, 2007-01-1110. 

Giugliano, M., Lonati, G., Butelli, P., Romele, L., Tardivo, R., Grosso, M., 2005. Fine 

particulate (PM2. 5–PM1) at urban sites with different traffic exposure. Atmospheric 

Environment, 39, 2421-2431. 

Gramotnev, G., Ristovski, Z., 2004. Experimental investigation of ultra-fine particle 

size distribution near a busy road. Atmospheric Environment 38, 1767–1776.  

Grigoratos, T., Gustafsson, M., Eriksson, O., Martini, G., 2018. Experimental 

investigation oftread wear and particle emission from tyres with different tread wear marking. 

Atmos.Environ. 182, 200–212. 

Grigoratos, T., Martini, G., 2015. Brake wear particle emissions : A review. Environ. 

Sci.Pollut. Res. 22, 2491–2504. 

Grigoratos, T., Martini, G., 2014. Non-Exhaust Traffic Related Emissions. Brake and 

TyreWear PM. 2014. Available 

online:https://publications.jrc.ec.europa.eu/repository/bitstream/JRC89231/jrc89231online%2

0final%20version%202.pdf (accessed on 5 November 2020). 

https://publications.jrc.ec.europa.eu/repository/bitstream/JRC89231/jrc89231online%20final%20version%202.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC89231/jrc89231online%20final%20version%202.pdf


122 

 

Grigoratos, T., Martini, G., 2015. Brake wear particle emissions:a review. Environ. 

Sci.Pollut. Res. Int. 22, 2491–2504. 

Grimm, H., Eatough, D.J., 2009. Aerosol Measurement: The Use of Optical Light 

Scattering for the Determination of Particulate Size Distribution, and Particulate Mass, 

Including the Semi-Volatile Fraction.  Journal of the Air & Waste Management Association, 

59, 101–107.  

Hand, J. L., Gill, T. E., Schichtel, B. A., 2019. Urban and rural coarse aerosol mass 

across the United States: Spatial and seasonal variability and long-term trends. Atmospheric 

Environment, 218, 117025. 

Harrison, R.M., 2020. Airborne particulate matter. Philos. Trans. R. Soc. A Math. 

Phys. Eng.Sci. 378, 2019031920 

Harrison, R.M., Jones, A.M., Gietl, J., Yin, J., Green, D.C., 2012. Estimation of 

thecontributions of brake dust, tire wear, and resuspension to non-exhaust traffic 

particlesderived from atmospheric measurements. Environ. Sci. Technol. 46, 6523–6529. 

Harris, S., Maricq, M., 2001. Signature size distributions for diesel and gasoline 

engine exhaust particulate matter. Journal of Aerosol Science 32, 749−764. 

Harrison, R.M., Yin, J., Mark, D., Stedman, J., Appleby, R.S., Booker, J., Moorcroft, 

S., 2001. Studies of the coarse particle (2.5–10 μm) component in UK urban atmospheres. 

Atmospheric Environment 35, 3667-3679. 

Harrison, RM., Dall‘Osto, M., Beddows, DCS., Thorpe, AJ., Bloss, WJ., Allan, JD., 

Coe, H., Di Marco, CF., Smith, S., 2012b. Atmospheric chemistry and physics in the 

atmosphere of a developed megacity (London): An overview of the REPARTEE experiment 

and its conclusions. Atmos. chem. phys.12, 3065-3114. 

Harrison, R. M., Jones, A. M., Beddows, D. C., Dall'Osto, M., Nikolova, I., 2016. 

Evaporation of traffic-generated nanoparticles during advection from source.  Atmos. 

Environ. 125, 1-7. 

Heal, M. R., Kumar, P., Harrison, R. M., 2012. Particles, Air Quality, Policy and 

Health. Chemical Society Reviews 41, 6606–6630. 

He, M., Dhaniyala, S., 2012. Vertical and horizontal concentration distributions of 

ultrafine particles near a highway. Atmos. Environ. 46, 225-236. 



123 

 

Helland, A., Wick, P., Koehler, A., Schmid, K., Som, C., 2007. Reviewing the 

environmental and human health knowledge base of carbon nanotubes. Environ. Health. 

Perspect. 115 (8), 1125-1131, ISSN 0091-6765.  

Hewitt, C. N., Ashworth, K., MacKenzie, A. R., 2020. Using green infrastructure to 

improve urban air quality (GI4AQ). Ambio 49(1), 62-73. 

Hietikko, R., Kuuluvainen, H., Harrison, RM., Portin, H., Timonen, H., Niemi, JV., 

Rönkkö, T., 2018. Diurnal variation of nanocluster aerosol concentrations and emission 

factors in a street canyon. Atmos. Environ.189, 98-106. 

Hinds, W.C., 1999. Aerosol technology: properties, behavior and measurement of 

Airborne particles. John Wiley & sons, U.K 483.  

Hitchins, J., Morawska, L., Wolff, R., Gilbert, D., 2000. Concentrations of 

submicrometre particles from vehicle emissions near a major road ». Atmos. Environ. 34 (1): 

51-59. 

Huang, S., Taddei, P., Lawrence, J., Martins, M.A., Li, J., Koutrakis, P., 2020. Trace 

element mass fractions in road dust as a function of distance from road. J. Air Waste Manag. 

Assoc.70, 34001. 

Huang R J, Zhang Y, Bozzetti C., …. ,2014. High secondary aerosol contribution to 

particulate pollution during haze events in China. Nature 514, 218–222. 

Hujia, Z., Huizheng, C., Hiaoye, Z., Yanjun, M., Yangfeng, W., Hong, W., Yaqiang, 

W., 2013. Characteristics of visibility and particulate matter (PM) in an urban area of 

northeast China. Atmos. Pollut. Res. 4, 427-434. 

Humphrey, G.B., Maier, H.R., Wu, W., Mount, N.J., Dandy, G.C., Abrahart, R.J., 

Dawson, C.W., 2017. Improved validation framework and R-package for artificial neural 

network models. Environ. Model. Softw 92, 82–106. 

Hussein, T., Saleh, S. S. A., dos Santos, V. N., Abdullah, H., Boor, B. E., 2019. Black 

Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: 

An Assessment Based on Integrated Stationary and Mobile Observations. Atmosphere, 10, 

323. 



124 

 

Hussein, T., Johansson, C., Karlsson, H., Hansson, H. C., 2008. Factors affecting non-

tailpipeaerosol particle emissions from paved roads: On-road measurements in Stockholm, 

Sweden. Atmos. Environ. 42(4), 688-702. 

Hussein, T., Karppinen, A., Kukkonen, J., Härkönen, J., Aalto, P.P., Hämeri, K., 

Kerminen,V.M., Kulmala, M., 2006. Meteorological dependence of size-fractionated number 

concentrations of urban aerosol particles. Atmos. Environ. 40, 1427–1440. 

Hussein, T., Alghamdi, M. A., Khoder, M., AbdelMaksoud, A. S., Al-Jeelani, H., 

Goknil, M. K., Shabbaj., I.I., Almehmadi, F.M., Hyvärinen, A., Lihavainen, H., Hämeri, K., 

2014. Particulate matter and number concentrations of particles larger than 0.25 µm in the 

urban atmosphere of Jeddah, Saudi Arabia.  Aerosol. Air. Qual. Res. 14(5), 1383-1391. 

Hussein, T., Saleh, S. S. A., dos Santos, V. N., Abdullah, H., Boor, B. E., 2019. Black 

Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: 

An Assessment Based on Integrated Stationary and Mobile Observations. Atmosphere 10(6), 

323. 

Hossain, A.M.M., Park, S., Kim, J.S., Park, K., 2012. Volatility and mixing states of 

ultrafine particles from biomass burning. J. Hazard. Mater. 205, 189–197. 

Hosseini, S., Li, Q., Cocker, D., Weise, D., Miller, A., Shrivastava, M., Miller, J.W., 

Mahalingam, S., Princevac, M., Jung, H., 2010. Particle size distributions from laboratory-

scale biomass fires using fast response instruments. Atmos. chem. phys. 10, 8065–8076. 

Horvath, H., 2008. Conference on visibility, aerosols, and atmospheric optics, Vienna, 

September 3–6, 2006. Atmos. Environ. 42 (11), 2569-2570, ISSN 1352-2310.  

 Ibald-Mulli, A., Wichmann, H.E., Kreyling, W., Peters, A., 2002. Epidemiological 

evidence on health effects of ultrafine particles. Journal of Aerosol Medicine: Deposition, 

Clearance, and Effects in the Lung 15 (2), 189–201, ISSN 0894-2684.  

Imhof, D., Weingartner, E., Ordóñez, C., Gehrig, R., Hill, M., Buchmann, B., 

Baltensperger, U., 2005. Real-world emission factors of fine and ultrafine aerosol particles for 

different traffic situations in Switzerland. Environ. Sci. Technol. 39(21), 8341-8350.  

Imhof, D., Weingartner, E., Vogt, U., Dreiseidler, A., Rosenbohm, E., Scheer, V., 

Vogt, R., Nielsen, O.J., Kurtenbach, R., Corsmeier, U., Kohler, M., Baltensperger, U., 2005. 



125 

 

Vertical distribution of aerosol particles and NOx close to a motorway. Atmos. Environ39, 

5710-5721. 

Institut National de la statistique et des études statistiques – Insee, 2018. Population 

légales 2016-Commune de Bron (69029). Available 

at:https://www.insee.fr/fr/statistiques/3681328?geo=COM-69029. 

INRS, 2012. Mesure de concentrations dans les conduits de transport de 

pollutionsparticulaires. HST, ND 2363 – 228-12. 

Jamson, S.L., Brouwer, R., Seewald, P., 2015. Supporting eco-driving. Transp. 

Res. Part C. Emerg. Technol. 58,629–630. 

Janssen, N., Fischer, P., Marra, M., Ameling, C., Cassee, F.R., 2013. Short-term 

effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Science of the 

Total Environment, 463–464, 20–26.  

Jekel, M., 2019. Scientific Report on Tyre and Road Wear Particles, TRWP, in the 

aquatic environment. European TRWP Platform. 

Ježek, I., Drinovec, L., Ferrero, L., Carriero, M., Moènik, G., 2015. Determination of 

car on-road black carbon and particle number emission factors and comparison between 

mobile and stationary measurements. Atmos. Meas. Tech. 8, 43–55. 

Jiang, R., Bell, M.L., 2008. A Comparison of Particulate Matter from Biomass-

Burning Rural and Non-Biomass-Burning Urban Households in Northeastern China.  

Environ. Health. Perspect. 116, 907–914. 

Jiang, P., Dong, Q., Li, P., 2017. A novel hybrid strategy for PM2.5 concentration 

analysisand prediction. J. Environ. Manag. 196, 443–457.  

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, C., Brooks, N., 

Cao, J.J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., LaRoche, J., 

Liss, P.S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., Torres, R., 2005. Global 

ironconnections between desert dust, ocean biogeochemistry, and climate. Science 308 

(5718),67-71. 

Johnson, K., Durbin, T., Jung, H., Cocker, D., Bishnu, D., Giannelli, R., 2011. 

Quantifying in-use PM measurements for heavy-duty diesel vehicles. Environ. Sci. Technol. 

45, 6073–6079.  

https://www.insee.fr/fr/statistiques/3681328?geo=COM-69029


126 

 

Jonathan, O.A., Josef, G.T., Andrew, S., 2012. Clearing the air: a review of the effects 

of particulate matter air pollution on human health. J. Med. Toxicol. 8 (2), 166-175. 

Joodatnia, P., Kumar, P., Robins, A., 2013. The behavior of traffic produced 

nanoparticles in a car cabin and resulting exposure rates. Atmos. Environ. 65, 40-51. 

Juneng, L., Latif, M.T., Tangang, F., 2011. Factors influencing the variations of PM10 

aerosol dust in KlangValley,Malaysia during the summer. Atmos. Environ. 45, 4370–4378. 

Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis, T., Ntziachristos, 

L.,Keskinen, J., Rönkkö, T., 2014. Exhaust particles of modern gasoline vehicles: A 

laboratory and an on-road study. Atmos. Environ. 97, 262-270. 

Kangasluoma, J., Cai, R., Jiang, J., Deng, C., Stolzenburg, D., Ahonen, L. R., Chan, 

T., Fu, Y., Kim, C., Laurila, TM., Zhou, Y., Dada, L., Sulo, J., Flagan, RC., Kulmala, M., 

Petaja, T., Lehtipalo, K., 2020. Overview of measurements and current instrumentation for 1–

10 nm aerosol particle number size distributions.  J. Aerosol. Sci. 148, 105584. 

Kettunen, J., Lanki, T., Tiittanen, P., Aalto, P.P., Koskentalo, T., Kulmala, M., 

Salomaa, V., Pekkanen, J., 2007. Associations of fine and ultrafine particulate air pollution 

with stroke mortality in an area of low air pollution levels. Stroke 38, 918–922. 

Keuken, M. P., Moerman, M., Voogt, M., Zandveld, P., Verhagen, H., Stelwagen, U., 

2016. Particle number concentration near road traffic in Amsterdam (the Netherlands): 

comparison of standard and real-world emission factors. Atmos. Environ. 132, 345-355. 

Kesarkar, A.P., Biswal, A., Kesarkar, A.P., Mor, S., Ravindra, K., 2020. High 

resolutionvehicular PM10 emissions over megacity Delhi: Relative contributions of exhaust 

and non-exhaust sources. Sci. Total Environ. 699, 134273. 

Keyvanfar, A., Shafaghat, A., Muhammad, N. Z., Ferwati, M. S., 2018. Driving 

behavior and sustainable mobility: policies and approaches revisited. Sustainability 10(4), 

1152. 

Khan, Y., Johnson, K., Durbin, T., Jung, H., Cocker, D., Bishnu, D., Giannelli, R., 

2012.Characterization of PM–PEMS for in-use measurements conducted during validation 

testing for the PM–PEMS measurement allowance program. Atmos. Environ. 55, 311–318. 

Khayatian F, Sarto L, Dall‘O‘ G (2016) Application of neural networks for evaluating 

energy performance certificates of residential buildings. J. Energy Build, 125, 45–54 (2016). 

https://www.sciencedirect.com/science/article/pii/S1352231014006190#!


127 

 

Kheirbek, I., Haney, J., Douglas, S., Ito, K., Matte, T., 2016. The contribution of 

motor vehicle emissions to ambient fine particulate matter public health impacts in New York 

City: a health burden assessment. J. Environ. Health.15(1), 1-14. 

Khoshnevisan B, Rafiee S et al (2014) Prediction of potato yield based on energy 

inputs using multi-layer adaptive neuro-fuzzy inference system. Elsevier 

MEASUREMENT.47, 521–530. 

Kim, K.H., Lee, S.B., Woo, D., Bae, G.N., 2015. Influence of wind direction and 

speed on the transport of particle-bound PAHs in a roadway environment. 

Atmospheric Pollution Research 6, 1024-1034. 

Kim, Y.J., Kim, K.W., Kim., S.D., Lee, B.K., Han, J.S., 2006. Fine particulate matter 

characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and 

Incheon. Atmos. Environ.40 (2), 593-605.  

Kim, S.Y., Peel, J.L., Hannigan, M.P., Dutton, S.J., Sheppard, L., Clark, M.L., Vedal, 

S., 2012. The temporal lag structure of short-term associations of fine particulate matter 

chemical constituents and cardiovascular and respiratory hospitalizations. Environmental 

Health Perspectives, 120, 1094–1099. 

Kim, G., Lee, S., 2018. Characteristics of tire wear particles generated by a tire 

simulator under various driving conditions. Environ. Sci. Technol. 52 (21), 12153-12161.21. 

Kingston, G.B., Lambert, M.F., Maier, H.R., 2005a. Bayesian training of artificial 

neuralnetworks used for water resources modeling. Water Resour. Res. 41 (12), 1–11. 

Kingston, G.B., Maier, H.R., Lambert, M.F., 2005b. Calibration and validation of 

neuralnetworks to ensure physically plausible hydrological modeling. J. Hydrol. 314 (1–4), 

158–176.  

Kittelson, D.B., 1998. Engines and nano-particles: a review. J. Aerosol. Sci. 29, 575-

588. 

Kittelson, D. B., Watts, W. F., Johnson, J. P., 2004. Nanoparticle emissions on 

Minnesota highways. Atmos. Environ.38 (1), 9-19. 

Kittelson, DB. , Watts, WF, Johnson, JP., 2003. Nanoparticle emissions on Minnesota 

highway. Atmos. Environ. 38, 9-19.  



128 

 

Kontses, A., Triantafyllopoulos, G., Ntziachristos, L., Samaras, Z., 2020. Particle 

number (PN) emissions from gasoline, diesel, LPG, CNG and hybrid-electric light-duty 

vehicles under real-world driving conditions. Atmospheric Environment, 222, 117126. 

Kozawa, K., Winer, A.M., Fruin, S.A., 2012. Ultrafine particle size distributions near 

freeways: Effects of differing wind directions on exposure. Atmospheric Environment 63, 

250–260. 

Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and 

dispersion modelling of nanoparticles from road traffic in the urban atmospheric 

environment–A review.  Journal of Aerosol Science 42, 580–603.  

Kumar, P., Fennell, P., Britter, R., 2008b. Measurements of particles in the 5–1000 nm 

range close to road level in an urban street canyon. Science of the Total Environment 390, 

437–447. 

Kumar, P., Pirjola, L., Ketzel, M., Harrison, R. M., 2013. Nanoparticle Emissions 

From 11 Non-Vehicle Exhaust Sources–A Review. Atmospheric Environment 6, 252–277. 

Kumar, P., Robins, A., ApSimon, H., 2010. Nanoparticle emissions from biofuelled 

vehicles—their characteristics and impact on the number‐based regulation of atmospheric 

particles. Atmospheric Science Letters 11(4), 327-331. 

Kumar, P., Fennell, P., Britter, R., 2008. Effect of wind direction and speed on the 

dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci. 

Total. Environ. 402, 82-94. 

Kumar, G., Malik, H., 2016. Generalized regression neural network-based wind speed 

prediction model for Western Region of India. Procedia Comput. Sci. 93, 26–32. 

Kumar, P., Fennell, P., Hayhurst, A., Britter, R., 2009. Street versus rooftop level 

concentrations of fine particles in a Cambridge Street canyon.  Boundary. Layer. 

Meteorol. 131, 3–18. 

Kumar, P.S., Pavithra, K.G., Naushad, M., 2019. Characterization techniques for 

nanomaterials. In Nanomaterials for Solar Cell Applications, 97-124. Elsevier.  

Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Min, H., Kulmala, M., Harrison, 

R.M., Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kozawa%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=24415904
https://www.ncbi.nlm.nih.gov/pubmed/?term=Winer%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=24415904
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fruin%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=24415904


129 

 

Kumar, P., Robins, A., Vardoulakis, S., Britter, R., 2010. A review of the 

characteristics of nanoparticles in the urban atmosphere and the prospects for developing 

regulatory controls. Atmos. Environ. 44, 5035-5052.  

Kundu, S., Pal, A.K., 2015.  The evaluation of airborne respirable particulates in 

opencast mining area of Jharia coal field using grimm 1.109 real-time portable aerosol 

spectrometer. Journal of Biodiversity and Environmental Sciences (JBES), 6, 276-287. 

Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, 

T., Franchin, A., 2013. Direct observations of atmospheric aerosol nucleation. Science 

339(6122), 943-946. 

Krecl, P., Johansson, C., Targino, A. C., Ström, J., Burman, L., 2017. Trends in black 

carbon and size-resolved particle number concentrations and vehicle emission factors under 

real-world conditions.  Atmos. Environ. 165, 155-168. 

Kreider, M. L., Panko, J. M., McAtee, B. L., Sweet, L. I., Finley, 466 B. L., 

2010.Physical and chemical characterization of tire-related particles: Comparison of particles 

generated using different methodologies. Sci. Total Environ. 408, (3), 652-659. 

Kwak, J., Kim, H., Lee, J., Lee, S., 2013. Characterization of non-exhaust coarse and 

fineparticles from on-road driving and laboratory measurements. Sci. Total Environ. 458-460, 

273-282. 

Kwak, J., Lee, S., Lee, S., 2014. On-road and laboratory investigations on non-exhaust 

ultrafine particles from the interaction between the tire and road pavement under braking 

conditions. Atmos. Environ. 97, 195-205. 

Lack, D.A., Lovejoy, E.R., Baynard, T., Pettersson, A., Ravishankara, A.R., 2006. 

Aerosol Absorption Measurement Using Photoacoustic Spectroscopy: Sensitivity, 

Calibration, and Uncertainty Developments.  Aerosol. Sci. Tech.40, 697–708. 

Levinson, D., 2010. Equity effects of road pricing: A review. Transp. Rev. 30, 33–57. 

Legates, D.R., McCabe, G.J., 1999. Evaluating the use of ―Goodness-of-fit‖ 

Measuresin hydrologic and hydroclimatic model validation. Water. Res. 35, 233e241. 

Lightstone, S.D., Moshary, F., Gross, B., 2017. Comparing CMAQ forecasts with a 

neuralnetwork forecast model for PM2.5 in New York. Atmosphere 8 (9).  



130 

 

Li, W., Wang, C., Wang, H., Chen, J., Yuan, C., Li, T., Wang, B., 2014. Distribution 

of atmospheric particulate matter (PM) in rural field, rural village and urban areas of northern 

China. Environmental Pollution, 185, 134-140. 

Liu, Z., Hu, B., Zhang, J., Xin, J., Wu, F., Gao, W., Wang, M., Wang, Y., 2017. 

Characterization of fine particles during the 2014 Asia-Pacific economic cooperation summit: 

number concentration, size distribution and sources. Tellus, Series B: Chemical and 

Physical Meteorology 69 (1), 1303228. 

Lippman.M., Yeates, D.B., Albert, R.E.,1980. Deposition, retention, and clearance of 

inhaled particles. The British Journal of Industrial Medicine, 37, 337–362. 

Luhana, L., Sokhi, R., Warner, L., Mao, H., Boulter, P., McCrae, I., Wright, J., 

Reeves, N.,Osborn, D., 2004. Non-exhaust particulate measurements: results. In: Deliverable 

8 of theEuropean Commission DG TREN 5th Framework Particulates Project. 

Lu F, Chen Z, Liu W Q, Shao H B (2016) Modeling chlorophyll-a concentrations 

using an artificial neural network for precisely eco-restoring lake basin. Ecol. Eng. 95, 422–

429. 

Mac Kinnon, M., Shaffer, B., Carreras-Sospedra, M., Dabdub, D., Samuelsen, G. S., 

Brouwer, J., 2016. Air quality impacts of fuel cell electric hydrogen vehicles with high levels 

of renewable power generation. Int. J. Hydrog. Energy 41(38), 16592-16603. 

Mahowald, N.M., Ballantine, J.A., Feddema, J., Ramankutty, N., 2007. Global trends 

invisibility: implications for dust sources. Atmos. chem. phys. 7, 3309-3339. 

Maier, H.R., Dandy, G.C., 2000. Neural networks for the prediction and forecasting 

ofwater resources variables: a review of modelling issues and applications. Environ.Model. 

Softw 15 (1), 101–124.  

Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., 2010. Methods used for the 

developmentof neural networks for the prediction of water resource variables in river systems: 

current status and future directions. Environ. Model. Softw 25 (8), 891–909.  

Mainka, A., Zajusz-Zubek, E., 2019. PM1 in Ambient and Indoor Air—Urban and 

Rural Areas in the Upper Silesian Region, Poland. Atmosphere, 10, 662.  

Mamakos, A., Arndt, M., Hesse, D., Augsburg, K., 2019. Physical Characterization of 

Brake-Wear Particles in a PM10 Dilution Tunnel. Atmosphere 10 (11), 639.  



131 

 

Mathissen, M., Scheer, V., Vogt, R., Benter, T., 2011. Investigation on the potential 

generation of ultrafine particles from the tire-road interface. Atmos. Environ. 45, 6172-6179. 

Maricq, M. M., Podsiadlik, D. H., Chase, R. E., 1999. Gasoline vehicle particle size 

distributions: Comparison of steady state, FTP, and US06 measurements. Environmental 

Science & Technology, 33, 2007-2015.  

Martinello, K., Hower, J. C., Pinto, D., Schnorr, C. E., Dotto, G. L., Oliveira, M. L. S., 

Ramos, C. G., 2021. Artisanal ceramic factories using wood combustion: A nanoparticles and 

human health study.  Geosci. Front. 101151. 

Mayer, A., Czerwinski, J., Kasper, M., Ulrich, A., Mooney, J.J., 2012. Metal Oxide 

Particle Emissions from Diesel and Petrol Engines. SAE technical Paper 2012-01-0841, SAE: 

Warrendale, PA, USE. 

Maynard, A.D., Maynard, R.L., 2002. A derived association between ambient aerosol 

surface area and excess mortality using historic time series data. Atmos. Environ. 36, 5561-

5567. 

McEntee, J.C., Ogneva-Himmelberger, Y., 2008. Himmelberger Diesel particulate 

matter, lung cancer, and asthma incidences a long major traffic corridors in MA, USA: a GIS 

analysis. Health and Place, 14, 817-828.  

Mehel, A., Murzyn, F., 2015. Effect of air velocity on nanoparticles dispersion in the 

wake of a vehicle model: Wind tunnel experiments. Atmos. Pollut. Res. 6, 612-617. 

Meister, K., Johansson, C., Forsberg, B., 2012. Estimated short-term effects of coarse 

particles on daily mortality in Stockholm, Sweden. Environ. Health. Perspect. 120, 3431 436. 

Mei, M., Song, H., Chen, L., Hu, B., Bai, R., Xu, D., Liu, Y., Zhao, Y., Chen, C., 

2018. Early-life exposure to three size- fractionated ultrafine and fine atmospheric particulates 

in Beijing exacerbates asthma development in mature mice. Part. Particle and Fibre 

Toxicology, 15, 1–16. 

Mendoza-Villafuerte, P., Suarez-Bertoa, R., Giechaskiel, B., Riccobono, F., 

Bulgheroni, C., Astorga, C., Perujo, A., 2017. NOx, NH3, N2O and PN real driving emissions 

from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on 

emissions. Science of The Total Environment, 609, 546-555. 



132 

 

Milojevic, A., Wilkinson, P., Armstrong, B., Bhaskaran, K., Smeeth, L and Hajat, S., 

2014. Short-term effects of air pollution on a range of cardiovascular events in England and 

Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. 

Heart 100, 1093-1098.  

Mordukhovich, I., Coull, B., Kloog, I., Koutrakis, P., Vokonas, P., Schwartz, J., 2015. 

Exposure to sub-chronic and long-term particulate air pollution and heart rate variability in an 

elderly cohort: The Normative Aging Study. Environmental Health 14 (1), 87. 

Mroz, R. M., Schins, R. P., Li, H., Jimenez, L. A., Drost, E. M., Holownia, A., 

MacNee, W., Donaldson, K., 2008. Nanoparticle-driven DNA damage mimics irradiation 

related carcinogenesis pathways. Eur. Respir. J.  31, 241–251.  

Murr, L.E., Garza, K.M., 2009. Natural and anthropogenic environmental 

nanoparticulates: their microstructural characterization and respiratory health implications.  

Atmos. Environ.43, 2683-2692.  

Mueller, S.F., Mallard, J.W., 2011. Contributions of natural emissions to ozone and 

PM2.5as simulated by the community multiscale air quality (CMAQ) model. Environ. Sci. 

Technol. 45 (11), 4817–4823.  

Namgung, H. G., Kim, J. B., Woo, S. H., Park, S., Kim, M., Kim, M. S., Bae, G.N., 

Park, D., Kwon, S. B., 2016. Generation of nanoparticles from friction between railway brake 

disks and pads. Environ. Sci. Technol. 50 (7), 3453-3461. 

Natusch, D. F. S., Wallace, J. R., 1974. Urban aerosol toxicity: 489 The influence of 

particle size.Science 186, 695-699. 

Nel, A., Xia, T., Madler, L., Li, N., 2006. Toxic potential of materials at the nanolevel. 

Science, 311 (5761), 622–627, ISSN 0036-8075.  

Nielsen, M. A., 2015). Neural Networks and Deep Learning; Determination Press: 

USA, 2015. Available online: http://neuralnetworksanddeeplearning.com/  (accessed on 29 

December 2017). 

Niu, X., Chuang, H. C., Wang, X., Ho, S. S. H., Li, L., Qu, L., Chow, J.C., Watson, 

J.G., Sun, J., Lee, S., Cao, J., Ho, K. F., 2020. Cytotoxicity of PM2. 5 vehicular emissions in 

the Shing Mun tunnel, Hong Kong. Environ. Pollut. 263, 114386. 

http://neuralnetworksanddeeplearning.com/


133 

 

Nussbaumer, T., Czasch, C., Klippel, N., Johansson, L., Tullin, C., 2008. Particulate 

emissions from biomass combustion in IEA countries. In Proceeding of the 16th European 

Biomass Conference and Exhibition, Zurich, Switzerland, 2–6 June. p. 40. 

Nowak, D. J., Crane, D. E., Stevens, J. C., 2006. Air pollution removal by urban trees 

and shrubs in the United States.  Urban. For. Urban. Green. 4 (3-4), 115-123. 

Nowak, D.J., Heisler M.G., 2010. Air Quality Effects of Urban Trees and Parks, 6 – 

34, Available at: from https://www.nrpa.org/globalassets/research/nowak-heisler-

summary.pdf 

Olivares, G., Johansson, C., Strom, J., Hansson, H.C., 2007. The role of ambient 

temperaturefor particle number concentrations in a street canyon. Atmos. Environ. 41 (10), 

2145–2155.  

Oberdörster, G., Maynard, A., Donaldson, K., Vincent Castranova, V., Fitzpatrick, J., 

Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., 

Warheit, D., Yang, H., 2005a. Principles for characterizing the potential human health effects 

from exposure to nanomaterials: elements of a screening strategy. Part. Fibre. Toxicol.  2 (8), 

1-35. 

Oberdörster, G., Oberdörster, E., Oberdörster, J., 2005b. Nanotoxicology: an emerging 

discipline evolving from studies of ultrafine particles.  Environ. Health. Perspect. 113, 823-

839. 

Omidvarborna, H., Kumar, P., Tiwari, A., 2020. ‗Envilution™‘chamber for 

performance evaluation of low-cost sensors. Atmospheric Environment, 223, 117264. 

Orfila, O., Saint Pierre, G., Messias, M., 2015. An android based eco driving 

assistance system to improve safety and efficiency of internal combustion engine passenger 

cars. Transp. Res. Part C. Emerg. Technol. 58, 772–782. 

Organization for Economic Co-operation and Development (OECD), 2020. Working 

Party onIntegrating Environmental and Economic Policies Non-exhaust emissions from road  

Causes, consequences and policy responses. JT03463487. Available at: www.oecd.org 

Ostro, B., Tobias, A., Querol, X., Alastuey, A., Amato, F., Pey, J., Perez, N., Sunyer, 

J., 2011. 

https://www.nrpa.org/globalassets/research/nowak-heisler-summary.pdf
https://www.nrpa.org/globalassets/research/nowak-heisler-summary.pdf


134 

 

The effects of particulate matter sources on daily mortality: a case-crossover study of 

Barcelona, Spain. Environmental Health Perspectives119, 21781–1787. 

Oviedo, D., Sabogal, O., 2020. Unpacking the connections between transport and 

well-being in socially disadvantaged communities: Structural equations approach to low-

income neighbourhoods in Nigeria. Journal of Transport & Health, 19, 100966. 

Padró-Martínez, L. T., Patton, A. P., Trull, J. B., Zamore, W., Brugge, D., Durant, J. 

L., 2012. Mobile monitoring of particle number concentration and other traffic-related air 

pollutants in a near-highway neighborhood over the course of a year. Atmospheric 

Environment, 61, 253-264.  

Panko, J.M., Hitchcock, K.M., Fuller, G.W., Green, D., 2019. Evaluation of tire 

wearcontribution to PM2.5 in urban environments. Atmosphere 10, 99 

Pant, P., Baker, S.J., Shukla, A., Maikawa, C., Godri Pollitt, K.J., Harrison, R.M., 

2015. The PM10 fraction of road dust in the UK and India: characterization, source profiles 

and oxidative potential. Science of the Total Environment, 530–531, 445–452.  

Pant, P., Harrison, R., 2013. Estimation of the contribution of road traffic emissions to 

particulate matter concentrations from field measurements: a review. Atmospheric 

Environment, 77, 78–97. 

Park, I., Kim, H., Lee, S., 2018. Characteristics of tire wear particles generated in a 

laboratorysimulation of tire/road contact conditions. J. Aerosol Sci. 124, 30–40. 

Pasquier, A., André, M., 2017. Considering criteria related to spatial variabilities for 

the assessment of air pollution from traffic.  

Pateraki, S., Asimakopoulos, D.N., Flocas, H.A., Maggos, T., Vasilakos, C., 2012. 

The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM 2.5–10). 

Science of the Total Environment 419, 124-135. 

Pekkanen, J., Timonen, K.L., Ruuskanen, J., Reponen, A., Mirme, A., 1997. Effects 

ofultrafine and fine particles in urban air on peak flow respiratory flow among children with 

asthmatic symptoms. Environ. Res. 74, 24-33.  



135 

 

Pelkmans, L., Debal, P., 2006. Comparison of on-road emissions with emissions 

measured onchassis dynamometer test cycles. Transp. Res. D Transp. Environ. 11(4), 233-

241. 

Perrone, M.R., Becagli, S., Garcia Orza, J.A., Vecchi, R., Dinoi, A., Udisti, R., 

Cabello, M., 2013. The impact of long-range-transport on PM1 and PM2.5 at a Central 

Mediterranean site. Atmospheric Environment, 71, 176–186. 

Peters, T.M., Ott, D., O‘Shaughnessy, P.T., 2006. Comparison of the Grimm 1.108 

and 1.109 Portable Aerosol Spectrometer to the TSI 3321 Aerodynamic Particle Sizer for Dry 

Particles. Annals of Occupational Hygiene, 50, 843–850. 

Pereira, G. M., Teinilä, K., Custódio, D., Gomes Santos, A., Xian, H., Hillamo, R., ..., 

Castro Vasconcellos, P. D., 2017. Particulate pollutants in the Brazilian city of São Paulo: 1-

year investigation for the chemical composition and source apportionment. Atmos. chem. 

phys. 17(19), 11943-11969. 

Pillarisetti, A., Allen, T., Ruiz-Mercado, I., Edwards, R., Chowdhury, Z., Garland, C., 

Pennise, D., 2017. Small, smart, fast, and cheap: microchip-based sensors to estimate air 

pollution exposures in rural households. Sensors 17(8), 1879. 

Pirjola, L., Paasonen, P., Pfeiffer, D., Hussein, T, Hameri, K., Koskentalo, T, 

Virtanen, A, Rankko, T., Keskinen, J., Pakkanen, T., 2006. Dispersion of particles and trace 

gases nearby a city highway: Mobile laboratory measurements in Finland. Atmos. Environ. 

40, 867-879. 

Plaia, A.Ã., Bondı, A.L., 2006. Single imputation method of missing values in 

environmentalpollution data sets. Atmos. Environ. 40, 7316–7330.  

Projected Emissions (March 2020 Submission). Updated 2020. Available 

online:http://cdr.eionet.europa.eu/gb/un/clrtap/projected/envxmo40w/overview (accessed on 

12October 2020). 

Quang, T. N., He, C., Morawska, L., Knibbs, L. D., Falk, M., 2012. Vertical particle 

concentration profiles around urban office buildings. Atmos. chem. phys. 12(11), 5017-5030. 

Qiu, Z., Liu, W., Gao, H. O., Li, J., 2019. Variations in exposure to in-vehicle particle 

mass and number concentrations in different road environments. Journal of the Air & Waste 

Management Association, 69 (8), 988-1002. 



136 

 

Rahimi, A., 2017. Short-term prediction of NO2 and NO x concentrations using 

multilayerperceptron neural network: a case study of Tabriz, Iran. Ecol. Process. 6 (1), 4. 

Seigneur, C., 2009.Current understanding of ultrafine particulate matter emitted from 

mobile sources. The Journal of the Air & Waste Management Association 59, 3− 17. 

Report of the GRPE Particle measurement Programme (PMP): Government Sponsored 

Work Programmes 2003. 

Shah, AS., Langrish, JP., Nair, H., McAllister, D.A., Hunter, A.L., Donaldson, K., 

Newby, D.E., Mills, N.L., 2013. Global association of air pollution and heart failure: a 

systematic review and meta-analysis. Lancet 382, 1039-1048. 

Ruskanen, J., Tuch, T., Ten Brink, H., Peters, A., Khlystov, A., Mirme, A., Kos, 

G.P.A., Brunekreef, B., Wichmann, H.E., Buzorius, G., Vallius, M., Kreyling, W.G., 

Pekkanen, J., 2001. Concentrations of ultrafine, fine and PM2.5 particles in three European 

cities. AtmosphericEnvironment 35, 3729–3738. 

Rovelli, S., Cattaneo, A., Borghi, F., Spinazzè, A., Campagnolo, D., Limbeck, A., 

Cavallo, D. M., 2017. Mass concentration and size-distribution of atmospheric particulate 

matter in an urban environment. Aerosol. Air. Qual. Res. 17 (5), 1142-1155. 

Rymaniak, L., Ziolkowski, A., Gallas, D., 2017. Particle number and particulate mass 

emissions of heavy-duty vehicles in real operating conditions. MATEC Web of Conferences 

118, 00025, VII International Congress on Combustion Engines. DOI: 

10.1051/matecconf/201711800025. 

Rönkkö, T., Virtanen, A., Vaaraslahti, K., Keskinen, J., Pirjola, L., Lappi, M., 

2006.Effect of dilution conditions and driving parameters on nucleation mode particles in 

diesel exhaust: laboratory and on-road study. Atmos. Environ. 40, 2893–2901. 

Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, JV., 

Pirjola, L., Timonen, HJ., Saarikoski, S., Saukko, E., Jarvinen, A., Silvennoinen, H., Rostedt, 

A., Olin, M., Yli-Ojanpera, J., Nousiainen, P., Kousa, A., Dal Maso, M., 2017. Traffic is a 

major source of atmospheric nanocluster aerosol. Proc. Natl. Acad. Sci. U S A.  114, 7549-

7554. 

Rönkkö, T., Timonen, H., 2019. Overview of sources and characteristics of 

nanoparticles in urban traffic-influenced areas. J. Alzheimer's Dis. 72 (1), 15-28. 



137 

 

Saha, PK., Khlystov, A., Snyder, MG., Grieshop, AP., 2018. Characterization of air 

pollutant concentrations, fleet emission factors, and dispersion near a North Carolina 

interstate freeway across two seasons. Atmos. Environ. 177, 143-153. 

Samarasinghe, S., 2006. Neural Networks for Applied Sciences and Engineering. 

Taylor &Francis.  

Safari M J S, Aksoy H, Mohammadi M (2016) Artificial neural network and 

regression models for flow velocity at sediment incipient deposition. J. Hydrol. 541, 1420–

1429. 

Seo, J., Shim, S., Kwon, S. H., Boo, K. O., Kim, Y. H., O‘Connor, F., ..., Morgenstern, 

O., 2020. The Impacts of Aerosol Emissions on Historical Climate in UKESM1. Atmosphere 

11(10), 1095. 

Shahraiyni, H.T., Sodoudi, S., 2016. Statistical modeling approaches for PM10 

predictionin urban areas; A review of 21st-century studies. Atmosphere 7 (2), 10–13.  

Shao, L., Hu, Y., Shen, R., Schäfer, K., Wang, J., Wang, J., Schnelle- Kreis, J., 

Zimmermann, R., BéruBé, K., Suppan, P., 2017. Seasonal variation of particle-induced 

oxidative potential of airborne particulate matter in Beijing. Sci. Total. Environ. 579, 1152–

1160. 

Schauer, J.J., Lough, G.C., Shafer, M.M., Christensen, W.F., Arndt, M.F., DeMinter, 

J.T., Park, J.S., 2006. Characterization of metals emitted from motor vehicles. Health. Eff. 

Inst..133, 1-76. 

Schneide, I.L., Teixeira, E.C., Silva Oliveira, L.F., Wiegand, F., 2015. Atmospheric 

particle number concentration and size distribution in a traffic–impacted area. Atmospheric 

Pollution Research 6, 877-885. 

Schneider, I. L., Teixeira, E. C., Dotto, G. L., Yang, C. X., Silva, L. F., 2020. 

Geochemical study of submicron particulate matter (PM1) in a metropolitan area.  Geosci. 

Front. 101130. 

Shao, L., Hu, Y., Shen, R., Schäfer, K., Wang, J., Wang, J., Schnelle- Kreis, J., 

Zimmermann, R., BéruBé, K., Suppan, P., 2017. Seasonal variation of particle-induced 

oxidative potential of airborne particulate matter in Beijing. Sci. Total. Environ. 579, 1152–

1160. 



138 

 

Simonen, P., Kalliokoski, J., Karjalainen, P., Rönkkö, T., Timonen, H., Saarikoski, S 

et al., 2019. Characterization of laboratory and real driving emissions of individual Euro 6 

light-duty vehicles–Fresh particles and secondary aerosol formation. Environmental 

Pollution, 255, 113175. 

Silva, L.F., Schneider, I. L., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, É. M., 

Gómez-Plata. L., Ramirez, O., Dotto, G. L., 2020a. Particulate matter geochemistry of a 

highly industrialized region in the Caribbean: Basis for future toxicological studies.  Geosci. 

Front. 101115. 

Silva, L. F., Pinto, D., Neckel, A., Oliveira, M. L., 2020b. An analysis of vehicular 

exhaust derived nanoparticles and historical Belgium fortress building interfaces.  Geosci. 

Front. 11(6), 2053-2060. 

Silva, L.F., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C., 2020c. Atmospheric 

nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation 

interactions. Chemosphere 254, 126822. 

Simon, M.C., Hudda, N., Naumova, E.N., Levy, J.I., Brugge, D., Durant, J.L., 2017. 

Comparisons of traffic-related ultrafine particle number concentrations measured in two urban 

areas by central, residential, and mobile monitoring. Atmos. Environ. 169, 113-127.  

Skrzypek, M., Zejda, J.E., Kowalska, M., Czech, E.M., 2013. Effect of residential 

proximity to traffic on respiratory disorders in school children in Upper Silesian Industrial 

Zone, Poland. International Journal of Occupational Medicine and Environmental Health 26, 

83–91. 

Slezakova, K., Morais, S., do Carmo Pereira, M., 2013. Atmospheric nanoparticles 

and their impacts on public health. In Current topics in public health. IntechOpen. 

Speranza, A., Caggiano, R., Margiotta, S., Trippetta, S., 2014. A novel approach to 

comparing simultaneous size-segregated particulate matter (PM) concentration ratios by 

means of a dedicated triangular diagram using the agri valley pm measurements as an 

example. Natural Hazards and Earth System Sciences, 14, 2727–2733. 

Srimuruganandam, B., Nagendra, S. M. S., 2010. Analysis and interpretation of 

particulate matter–PM10, PM2. 5 and PM1 emissions from the heterogeneous traffic near an 

urban roadway. Atmos. Pollut. Res. 1(3), 184-194. 



139 

 

Stone, V., Miller, M.R., Clift, M.J.D., Elder, A., Mills, N.L., Møller, P., Schins, 

R.P.F., Vogel, U., Kreyling, W.G., Alstrup Jensen, K., Kuhlbusch, T.A.J., Schwarze, P.E., 

Hoet, P., Pietroiusti, A., De Vizcaya-Ruiz, A., Baeza-Squiban, A., Teixeira, J.P., Tran, C.L., 

Cassee, F.R., 2017. Nanomaterials versus ambient ultrafine particles: an opportunity to 

exchange toxicology knowledge. Environmental Health Perspective, 125 (10), 106002.  

Stölzel, M., Breitner, S., Cyrys, J., Pitz, M., Wölke, G., Kreyling, W., Heinrich, J., 

Wichmann, H.E., Peters, A., 2007. Daily mortality and particulate matter in different size 

classes in Erfurt, Germany.  J. Expo. Sci. Environ. Epidemiol.  17 (5), 458-467. 

Strawa, A.W., Kirchstetter, T.W., Hallar, A.G., Ban-Weiss, G.A., McLaughlin, J.P., 

Harley, R.A., Lunden, M.M., 2010. Optical and physical properties of primary on road 

vehicle particle emissions and their implications for climate change. J. Aerosol. Sci. 41(1), 

36-50. 

Sugimoto, N., Shimizu, A., Matsui, I., & Nishikawa, M., 2016. A method for 

estimating the fraction of mineral dust in particulate matter using PM2.5-to- PM10 ratios. 

Particuology, 28, 114–120. 

Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S., 2013. Prediction of 

24-hour-average PM2.5 concentrations using a hidden Markov model with differentemission 

distributions in Northern California. Sci. Total Environ. 443, 93–103. 

Sun, Q., Hong, X., &Wold, L.E., 2010. Cardiovascular effects of ambient particulate 

air pollution exposure. Circulation, 121, 2755–2765. https://doi.org/10.1161/ 

Sun, G., Hoff, S.J., Zelle, B.C., Nelson, M.A., 2008. Development and comparison 

backpropagation and generalized regression neural network models to predict diurnal and 

seasonal gas and PM10 concentrations and emissions from swine buildings. Am. Soc. Agric. 

Biol. Eng. 51, 685–694. 

Tan, K.T., Lepp, N.W., 1977. Roadside vegetation: an efficient barrier to the lateral 

spread of atmospheric lead? Arboricultural Journal 3 (2), 79–85. 

Tang G, Zhao P, Wang Y., 2017.Mortality and air pollution in Beijing: the long-term 

relationship. Atmos. Environ. 150, 238–243. 

https://doi.org/10.1161/


140 

 

Thiyagarajan, V., Kalaichelvan, K., Vijay, R., Singaravelu, D.L., 2015. Influence of 

thermal conductivity and thermal stability on the fade and recovery characteristics of non-

asbestos semi-metallic disc brake pad. J. Braz. Soc. Mech. Sci. Eng. 38, 1207–1219. 

Thorpe, A., Harrison, R.M., 2008. Sources and properties of non-exhaust particulate 

matter from road traffic: A review. Sci. Total. Environ. 400, 270–282.  

Titos, G., Lyamani, H., Pandolfi, M., Alastuey, A., Alados-Arboledas, L., 2014. 

Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban 

environment. Atmospheric Environment, 89, 593–602. 

Timmers, V. R., Achten, P. A., 2016. Non-exhaust PM emissions from electric 

vehicles. Atmos. Environ. 134, 10-17. 

Tittarelli, A., Borgini, A., Bertoldi, M., De Saeger, E., Ruprecht, A., Stefanoni, R., ..., 

Crosignani, P., 2008. Estimation of particle mass concentration in ambient air using a particle 

counter. Atmos. Environ. 42 (36), 8543-8548. 

Terzano, C., Di Stefano, F., Conti, V., Graziani, E., Petroianni, A., 2010. Air pollution 

ultrafine particles: Toxicity beyond the lung.  Eur. Rev. Med. Pharmacol. Sci. 14 (10), 809-

821. 

Thorpe, A.J., Harrison, R.M., 2008. Sources and properties of non-exhaust particulate 

matter from road traffic: a review. Sci. Total. Environ. 400, 270–282. 

Trejos, E. M., Silva, L. F., Hower, J. C., Flores, E. M., González, C. M., Pachón, J. E., 

Aristizábal, B. H., 2021. Volcanic emissions and atmospheric pollution: A study of 

nanoparticles.  Geosci. Front. 12(2), 746-755. 

Tsai, Y.I., 2005. Atmospheric visibility trends in an urban area in Taiwan 1961-2003. 

Atmospheric Environment 39, 5555-5567. TSI, 2008. Model 3936 Scanning Mobility Particle 

Sizer TSI Incorporated, USA. P/N 1933796. 

Valavanidis, A., Fiotakis, K., Vlachogianni, T., 2008. Airborne particulate matter and 

human health: toxicological assessment and importance of size and composition of particles 

for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and 

Health, Part C, 26(4), 339-362. 



141 

 

Vakili M, Sabbagh-Yazdi S R, Khosrojerdi S, Kalhor K (2017) Evaluating the effect 

of particulate matter pollution on estimation of daily global solar radiation using artificial 

neural network modeling based on meteorological data. J. Clean. Prod 141, 1275–1285.  

Veerabhadra Swamy, K.T., Lokesh, K.S., 1993. Lead dispersion studies along 

highways. Indian Journal of Environmental Health 35 (33), 205–209. 

Vehkamaki, H., Kulmala, M., Lehtinen, K.E.J., 2003. Modelling binary 

homogeneousnucleation of water-sulfuric acid vapors: parameterization for high 

temperatureemissions. Environ. Sci. Technol. 37, 3392–3398.  

Venkataraman, C., Rao, G.U.M., 2001. Emission Factors of Carbon Monoxide and 

Size-ResolvedAerosols from Biofuel Combustion. Environ. Sci. Technol. 35, 2100–2107. 

Verheggen, B., Weijers, E. P., 2010. Climate change and the impact of aerosol. A 

literature review. 

Virtanen, A., Rönkkö, T., Kannosto, J., Ristimaki, J., Makela, J., Keskinen, J., 

Pakkanen, T., Hillamo, R., Pirjola, L., H., Ameri., K., 2006.Winter and summer time size 

distributions and densities of traffic related aerosol particles at a busy highway in Helsinki. 

Atmos. chem. phys.6, 2411-2421. 

Vincent, J.H., 2007. Science, Standards, Instrumentation and Applications. John Wiley 

& Sons: Hoboken, NJ, USA. 636. 

Vogt, R., Scheer, V., Casati, R., Bender, T., 2003.On road measurement of Particle 

emission in the exhaust plume of a diesel passenger car. Environ. Sci. Technol.  37, 4070 

4076. 

Voukantsis, D., Karatzas, K., Kukkonen, J., Rasanen, T., Karppinen, A., Kolehmainen, 

M., 2011. Intercomparison of air quality data using principal component analysis, and 

forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in 

Thessalloniki and Helsinki. Sci. Total Environ. 409, 1266–1276. 

Wang, C. F., Chang, C. Y., Tsai, S. F., Chiang, H. L., 2005. Characteristics of road 

dust fromdifferent sampling sites in northern Taiwan. J. Air. Waste. Manag. Assoc. 55(8), 

1236-1244. 



142 

 

Wang, W., Shao, L., Li, J., Chang, L., Zhang, D., Zhang, C., Jiang, J., 2019. 

Characteristics of individual particles emitted from an experimental burning chamber with 

coal from the lung cancer area of Xuanwei, China. Aerosol. Air. Qual. Res. 19, 355–363. 

Wichmann, H.E., Spix, C., Tuch, T., Wolke, G., Peters, A., Heinrich, J., Kreyling, 

W.G., Heyder, J., 2000. Daily mortality and fine and ultrafine particles in Erfurt, Germany. 

Part e I: role of particle number and mass. Research Report (Health Effect Institute) 98, 5-86. 

Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., Stone, V., 2002. Interactions 

between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. 

Pharmacol. 184, 172 –179.  

World Health Organization., 2006. WHO Air quality guidelines for particulate matter, 

ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk 

assessment (No. WHO/SDE/PHE/OEH/06.02). Geneva: World Health Organization. 

World Health Organization (WHO), 2018. Ambient (outdoor) air pollution. 

https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-

health. 

World Health Organization (WHO). 2013. Review of evidence on health aspects of air 

pollution- REVIHAAP Project; WHO Regional Office FOR Europe: Copenhagen, Denmark. 

World Health Organization, (WHO). 2016. Ambient (Outdoor) Air Quality and 

Health.Retrieved. http://www.who.int/mediacentre/factsheets/fs313/en, Accessed date: 14 

September 2017. 

Wu, W., Dandy, G.C., Maier, H.R., 2014. Protocol for developing ANN models and 

itsapplication to the assessment of the quality of the ANN model development process 

indrinking water quality modelling. Environ. Model. Softw 54, 108–127.  

Xing, J., Shao, L., Zheng, R., Peng, J., Wang, W., Guo, Q., Wang, Y., Qin, Y., Shuai, 

S., Hu, M., 2017. Individual particles emitted from gasoline engines: Impact of engine types, 

engine loads and fuel components.  J. Clean. Prod. 149, 461–471,  

Xing, J., Shao, L., Zhang, W., Peng, J., Wang, W., Hou, C., Shuai, S., Hu, M., Zhang, 

D., 2019. Morphology and composition of particles emitted from a port fuel injection gasoline 

vehicle under real-world driving test cycles.  J. Environ. Sci. (China). 76, 339– 348. 

https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
http://www.who.int/mediacentre/factsheets/fs313/en


143 

 

Xing, J., Shao, L., Zhang, W., Peng, J., Wang, W., Shuai, S., Hu, M., Zhang, D., 2020. 

Morphology and size of the particles emitted from a gasoline-direct-injection-engine vehicle 

and their ageing in an environmental chamber.  Atmos. chem. phys. 20 (5), 2781-2794. 

Xu, X.H., Brook, J.R., Guo, Y.S., 2007. A statistical assessment of saturation and 

mobile sampling strategies to estimate long–term average concentrations across urban areas. 

The Journal of the Air & Waste Management Association 57, 1396–1406.  

Young, L. H.,Wang, Y.T.,Hsu, H.C., Lin, C.H., Liou, Y.J., Lai, Y.C., Lin, 

Y.H.,Chang,W.L., Chiang, H.L., Cheng, M.T., 2012. Spatio-temporal variability of sub 

micrometer particle number size distributions in an air quality Management district. SCI. 

Total Environment 425, 135–145. 

Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., ..., 

Zhou, M., 2006. A review of measurement-based assessments of the aerosol direct radiative 

effect and forcing. Atmos. chem. phys.6(3), 613-666. 

Zajusz-Zubek, E., Radko, T., Mainka, A., 2017. Fractionation of trace elements and 

human health risk of submicron particulate matter (PM1) collected in the surroundings of 

coking plants. Environmental Monitoring and Assessment, 189(8), 389. 

Zhang, L., Cheng, Y., Zhang, Y., He, Y., Gu, Z., Yu, C., 2017. Impact of air humidity 

fluctuation on the rise of PM mass concentration based on the high-resolution monitoring 

data. Aerosol. Air. Qual. Res. 17(2), 543-552. 

Zhang, J., Chen, Z., Lu, Y., Gui, H., Liu, J., Liu, W., Wang, J., Yu, T., Cheng, Y., 

Chen., Y., 2017.Characteristics of aerosol size distribution and vertical backscattering 

coefficient profile during 2014 APEC in Beijing.  Atmospheric Environment 148, 30-41. 

Zhu, Y., Hinds, W.C., 2005. Predicting particle number concentrations near a highway 

based on vertical concentration profile. Atmospheric Environment 39, 1557-1566. 

Zhu, Y., Hinds, W. C., Shen, S., Sioutas, C., 2004. Seasonal trends of concentration 

and size distribution of ultrafine particles near major highways in Los Angeles.  Aerosol 

Science and Technology38, 5–13.  

Zhu, Y., Hinds, W.C., Kim, S., Sioutas, C., 2002a. Concentration and size distribution 

of ultrafine particles near a major highway. The Journal of the Air & Waste Management 

Association 52, 1032-1042. 



144 

 

Zhu, Y., Hinds, W.C., Kim, S., Shen, S., Sioutas C., 2002 b. Study of ultrafine 

particles near a major highway with heavy-duty diesel traffic. Atmospheric Environment 36, 

4323–433. 

Zhu, Y., Hinds, W.C., 2005. Predicting particle number concentrations near a highway 

based on vertical concentration profile. Atmos. Environ. 39, 1557-1566. 

Zhu, J., Penner, J. E., Lin, G., Zhou, C., Xu, L., Zhuang, B., 2017. Mechanism of SOA 

formation determines magnitude of radiative effects. Proc. Natl. Acad. Sci. USA. 114, 12685–

12690. 

Zhu, R., Hu, J., Bao, X., He, L., Lai, Y., Zu, L., Li, Y., Su, S., 2016. Tailpipe 

emissions fromgasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both 

low and high ambient temperatures. Environnemental Pollution. 216, 223–234. 

Zwozdziak, A., Sówka, I., Willak-Janc, E., Zwozdziak, J., Kwiecińska, K., Balińska-

Miśkiewicz, W., 2016. Influence of PM1 and PM2.5 on lung function parameters in 

healthyschoolchildren—a panel study. Environ. Sci. Pollut. Res. Int. 23, 23892–2390 

 

 

 

 

 

 

 

 

 

 

 



145 

 

Appendix 

Table 1 

 

Sampling 

measurement 

Methods 

 

 

Authors 

 

 

Instruments 

 

 

Size 

range 

 

 

 

Advantages 

 

 

 

Disadvantages 

 

𝑃𝑁𝐶𝑠(𝑝/𝑐𝑚3) 

/PMCs 

(𝑔/𝑚3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real world 

measurements 

 

 

Béji et al., 2020 

 

ELPI and 

FMPS 

 

 

 

 

 

10 nm-

10 µm 

 

ELPI: 

Robust and 

large size 

range 

 

 

ELPI: Wide 

channels plates 

may affect the 

result 

 
1.0 × 105 

 

 

 

 

Brakewear 

particles in 

motorway 

 

FMPS: Fast 

indicates 

well process 

changes 

 

 

Less accurate 

than the SMPS 

 

 

Carpentieri and 

Kumar, 2011 

 

 

 

DMS50 

 

 

5-

560nm 

 

 

 

 

Very small 

particles 

 

 

Not suitable 

for larger 

particles 

 

 

(Min-Max) 

6.5. 10
4
 -7.388 

10
6
. 

 

Vehicle 
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exhaust 

emissions 

(30km/h) 

 

Gouriou et al., 

2004 

 

 

 

 

 

 

 

SMPS 

 

 

 

 

SMPS 

:30nm-

10µm 

 

 

 

 

 

 

SMPS: Very 

small 

particles 

 

 

 

 

SMPS: not 

suitable for 

larger particles 

and not used 

friendly and 

questionable 

cost 

 

 

 

 

(Min-Max) 

8.5×10
4
- 

1.1×10
6
 

 

 

 

Imhof et al., 2005 

 

ELPI 

 

ELPI: 

10 nm-

10 µm 

 

 

 

ELPI: 

Robust and 

large size 

range 

 

ELPI: Wide 

channels plates 

may affect the 

result 

 

(At high traffic 

– At low 

traffic) 

 

9.5×10
4 

-

1.95×10
4
 

 

 

Karjalainen et al., 

2014 

 

 

 

 

ELPI, CPC 

 

 

 

 

30 nm 

-10µm; 

5.6-

560 nm 

 

 

ELPI: 

Robust and 

large size 

range 

 

 

 

ELPI: Wide 

channels plates 

may affect the 

result 

 

 

 

(Min-Max) 

 

4.0×10
4
- 

5.0×10
4
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CPC: flow 

control 

feedback 

loop for 

greater 

concentratio

n accuracy 

 

CPC:Not 

compatible 

with SMPS 

 

Keuken et al., 

2016 

 

CPC 3775, 

CPC3783 

 

 

 

7-

310nm 

0.03-

10µm 

 

 

 

Flow control 

feedback 

loop for 

greater 

concentratio

n accuracy 

 

 

 

No compatible 

with SMPS 

 

(Workingdays- 

weekend) 

3.16×10
4
- 

2.88×10
4
 

 

Krecl et al., 2017 

 

CPC 

 

 

 

 

28- 

410 nm 

 

 

 

 

CPC: Has a 

flow control 

feedback 

loop for 

greater 

concentratio

n accuracy 

 

No compatible 

with SMPS 

 

Max –exhaust 

emissions 

 

6.4×10
3
 

 

 

 

Bukowiecki et al., 

2003 

 

 

SMPS, 

GRIMM1108 

 

 

 

 

7-10 

nm 

 

SMPS: Very 

small 

particles 

 

 

SMPS: not 

suitable for 

larger particles 

and not used 

friendly and 

 

total particle 

background 

number 

concentration 
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 relatively high 

cost 

 

- Rural road 

1.5×10
4 

- Urban road 

3.5×10
4
 

-Motorway 

8×10
4
 

 

GRIMM: 

Minimum of 

maintenance 

is needed 

and 

automaticall

y check 

system 

 

 

Not suitable 

for smaller 

particles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Belkacem et al., 

2020 

 

 

FMPS 

 

 

 

 

5-

560nm 

 

 

 

FMPS: Fast 

indicates 

well changes 

in process 

 

 

Less accurate 

than the SMPS 

 

 

(Min-Max) 

 

 

1.04 10
4
 - 2.70 

10
4
. 

 

 

 

Alam et al., 2011; 

 

 

GRIMM 

1109 

 

 

 

 

0.3-

20µm 

 

 

 

 

Minimum of 

maintenance 

is needed 

and 

automaticall

y check 

system 

 

 

Not suitable 

for smaller 

particles 

 

(Min-Max) 

-At 0.27m:
 

12.9×10
9 

-

2.9×10
9 

-At 2.5 m 

10.5×10
6
- 
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In situ 

measurements 

 

 6.0×10
6 

 

 

 

Srimuruganandam, 

and Nagendra, 

2010 

 

 

GRIMM 

1107 

 

 

 

 

 

 

 

0.25-

32µm 

 

PM10  

PM2.5 

PM1 

 

 

 

 

 

 

 

Minimum of 

maintenance 

is needed 

and 

automaticall

y check 

system 

 

 

Not suitable 

for smaller 

particles 

 

(Min-Max), 

PM10, PM2.5, 

PM1 

Weekdays: 

148–292,81–

122, 64–100 

g/m
3
 

Weekend 

150–290, 

 

85–134, 68–

110g/m
3
. 

 

 

 

 

Bilal et al., 2019; 

 

 

TEOM 

 

 

PM2.5 

 

 

Agrees will 

with filter 

samples 

 

 

With high 

concentration 

the filter has to 

be changed; 

Not suitable 

for smaller 

particles 

 

 

 

(Min-Max) 

Spring period 

34.55- 45.77 

Summer 

period 

17.92-31.48 

Autumn 

period 

43.37-51.32 
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Winter period 

47.48-54.77 

 

 

Filonchyk et al., 

2016; 

 

 

TEOM1400 

 

 

 

 

 

PM2.5-

PM10 

 

 

 

Agrees well 

with filter 

samples 

 

With high 

concentration 

the filter has to 

be changed; 

Not suitable 

for smaller 

particles 

 

 

Average mass 

concentrations 

 

PM2.5: 26 

PM10 :66 

 

 

Tittarelli et al., 

2008; 

 

 

Particle 

Counter 

 

 

 

0.3-

10µm 

 

 

Fluids with 

high 

viscosity or 

extreme 

contaminatio

n can be 

conveniently 

diluted prior 

to counting 

 

 

 

Not suitable 

for smaller 

particles 

 

Average mass 

concentrations 

 

- At rainy time 

>0 

PM10: 46.20 

PM2.5: 31.43 

 

- At 

temperature 

>13.5 °C 

PM10:28.39 

PM2.5: 21.04 
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Choi and Paulson, 

2016 

 

 

MMP, 

FMPS3091 

CPC3007 

 

 

 

 

 

5.6-

560 nm 

 

0,01 à 

1,0 µm 

 

 

 

 

 

FMPS: Fast 

indicates 

well changes 

in process 

 

 

Less accurate 

than the SMPS 

 

 
 

 

 

Max 

8.5×10
3
 

 

CPC: has a 

flow control 

feedback 

loop for 

greater 

concentratio

n accuracy 

 

 

With high 

concentration 

the filter has to 

be changed; 

Not suitable 

for smaller 

particles 

 

 

Geller et al., 2005  

 

CPC 

SMPS 

 

 

 

7-

270nm 

 

 

 

CPC: Has a 

flow control 

 

feedback 

loop for 

greater 

concentratio

n accuracy 

 

 

No compatible 

with SMPS 

 

(Min- Max) 

- Gasoline 

 

1.4 × 10
5
- 6.9 

× 10
5 

 

-Diesel + 

gasoline 

3.9 × 10
5
- 7.8 

× 10
5 
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Giugliano et al., 

2005  

 

 

GRIMM1107 

 

 

 

 

 

PM1, 

PM2.5 

 

 

 

 

 

GRIMM: 

Minimum of 

maintenance 

is needed 

and 

automaticall

y check 

system 

 

 

 

Not suitable 

for smaller 

particles 

 

 

(Min-Max) 

Spring period 

PM2.5:9.3-

39.7, 

PM1: 8.5-35.8 

 

- Summer 

period 

PM2.5:3.4-

40.3 

PM1:2-36.3 

 

- Autumn 

period 

PM2.5 :13.9-

70.1 

PM1:11.7-

63.6 

 

- Winter 

period 

PM2.5:12-

128.1 

PM1: 9.1-79.8 
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11

 NC: Number concentration  

 

 

 

 

Gomišček et al., 

2004  

 

 

 

TEOM 

 

 

 

 

 

 

PM1, 

PM2.5, 

PM10. 

 

 

 

Agrees will 

with filter 

samples 

 

 

 

With high 

concentration 

the filter has to 

be changed; 

Not suitable 

for smaller 

particles 

 

 

(Min-Max), in 

Urban area) 

 

- Winter 

period 

 

PM1: 4.4-75.1 

PM2.5:4.7-

96.4 

PM10:5.7-

104.6 

NC
11

: 

1.34×10
4 

- 

6.28×10
4 

 

- Summer 

period 

 

PM1: 3.0-32.6 

PM2.5: 4.1-

42.7 

PM10 : 7.2-

58.3 

NC :8.75×10
3
-

4.17×10
4 
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Hussein et al., 

2014  

 

 

EDM-180D, 

GRIMM 

 

 

 

 

0.25-

32 µm 

PM1 

PM2.5 

PM10 

 

 

 

 

GRIMM: 

Minimum of 

maintenance 

is needed 

and 

automaticall

y check 

system 

 

 

Not suitable 

for smaller 

particles 

 

Annual 

average PM; 

 

PM1: 13.34 

PM2.5:35.54 

PM10:107.02 

 

Hussein et al., 

2019 

 

 

CPC 3007-2-

TSI 

 

 

 

10nm-

1µm 

 

Has a flow 

control 

feedback 

loop for 

greater 

concentratio

n accuracy 

 

 

 

No compatible 

with SMPS 

 

 

(Min –Max), 

PNCs 

 

2.7 - 1.1× 10
5
 

 

 

 

 

 

 

Namgung et al., 

2016 

 

 

 

FMPS, 

GRIMM 

1109 

 

 

 

5.6-

560nm 

0.3-

 

GRIMM: 

Minimum of 

maintenance 

is needed 

and 

automaticall

y check 

 

GRIMM: Not 

suitable for 

smaller 

particles 

 

 

 

 

Total number 

concentration, 

Railway Brake 

Disks and 

Pads wear 
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 20µm 

 

system 

 

  

1.5×10
3
-10

7
 

 

FMPS: 

Detects well 

changes in 

process 

 

 

FMPS: Less 

accurate than 

SMPS 

 

 

 


